ICCM Conferences, The 6th International Conference on Computational Methods (ICCM2015)

Font Size: 
Invited: A Meta-model-based Importance Sampling for Reliability-based Design Optimization
Guangsong Chen, Linfang Qian, Wenyu Zhai

Last modified: 2015-06-28

Abstract


Reliability-based  design  optimization  (RBDO)  is  an  appropriate  design  optimization  method considering  the  uncertainties.  Accuracy  and  efficiency  are  two  important  issues.  In  this  research, polynomial chaos expansion (PCE) meta-model is used to approximate the expensive computational model  (e.g.  a  finite  element  model).  The  probability  of  failure  is  computed  through  importance sampling  which selects sample from a larger  stationary  sample set.  By using the new importance sampling, the method can not only calculate the accurate failure probabilities, but also avoid a large number  of  model  estimations  as  it  only  needs  one  simulation  run  during  the  optimum  design process. Thus, the trade-off of accuracy and efficiency of RBDO can be obtained for high nonlinear limit-sate function and time-consuming model.

Keywords


computation; modeling;simulation

An account with this site is required in order to view papers. Click here to create an account.