Plenary Lecture
High performance computing based on HDDM and AI applications | |
Ryuji Shioya |
MS-001 Theory and Formulation for Novel Computational Methods
Smoothed finite element method for contact elastoplastic analysis using area regularization techinque | |
Chao Sun, Zirui Li |
MS-002 Particle Based Methods
Quantitative assessment of disaster risk for the whole process of soil landslide based on stochastic material point method | |
Zheng Sun, Rui Wu, Xiaomin Zhou |
MS-004 Boundary Element Methods and Mesh Reduction Methods
Inverse scattering technique using deep learning for 3-D scalar wave propagation | |
Takahiro SAITOH, Sohichi HIROSE |
MS-012 Deformation, Fatigue and Fracture of Advanced Materials
On two-dimensional linear elastic fracture mechanics analysis using S-version Isogeometric Analysis with Singular Patch Method | |
Yusuke Sunaoka |
MS-013 Large Scale Coupled Problems and Related Topics
Extracting Accurate Human Body Structures from Anime Characters with Deep Learning and DiscoGAN | |
Sihan Liu, Ryuji Shioya, Yasushi Nakabayashi |
Development of Automatic Generating System of Motion-Pictograms from Still-Pictograms | |
Natsumi Okatani, Ryuji Shioya, Yasushi Nakabayashi, Terutoshi Tada |
Multistep prediction for dissolved gas analysis under imbalanced dataset | |
Hongjie Zheng, Ryuji Shioya, Yasushi Nakabayashi, Masato Masuda, Hiroshi Matoba, Keiichi Nakajima, Hideyuki Okakura, Hiroki Nakamura |
Large scale vibration analysis of Stradivari’s violin | |
Misora Kojima, Ryuji Shioya, Masao Yokoyama, Amane Takei, Genki Yagawa |
MS-015 Smoothed Finite Element Methods and Related Techniques
Analysis of dynamic contact behavior for biological structures based on the smoothed finite element methods (S-FEMs) | |
Jingui Zhao, Gang Wang, Chao Sun, Zirui Li |
Fast computation of thermal response based on the smoothed finite element methods for thermal ablation therapy | |
xia cai shi, ping rui Niu, wei shao wu, qing si li |
A mean value nSFEM for polygonal elements to solve particle-laden flow using discrete phase model | |
Guo Zhou, Tiantian Wang, Chen Jiang, Zhiyang Song |
MS-027 Computational Acoustics and Elastodynamics in Materials and Structures
Semi-analytical isogeometric analysis of waves propagation in elastic and poroelastic waveguides | |
Fakhraddin Seyfaddini, Hung Nguyen-Xuan, Vu-Hieu NGUYEN |
An enhanced finite element method for the vibration analysis of linear elastics | |
Lei Sun, Qiang Gui, Wei Li |
Magnetic tunable metamaterials | |
Liang SI, Ronghao BAO |
MS-028 Kernel and machine learning based solutions of PDEs
Novel deep learning approaches for learning scientific simulations | |
Saurabh Deshpande, Raúl Ian Sosa, Stéphane Bordas, Jakub Lengiewicz |
MS-033 Computational Biomechanics
Mechanical modeling of cell membrane including interactions between plasma membrane and actomyosin cortex | |
Kohsuke Tsukui, Hiromi Miyoshi, Naoya Sakamoto, Satoshi Ii |
MS-039 Computational Particle Dynamics
Total Lagrangian Material Point Method under high strain-rate deformation | |
Saurabh Singh, Harpreet Singh, Puneet Mahajan |
A Research of Water Dropping of Fire-fighting Aircraft Based on VOF to DPM Method | |
meng yu Shi |
MS-047 Computational modeling of geological hazards and related cascading processes
Multi-field Evolution and Slope Failure Mechanism during Rainfall Infiltration | |
Taosheng HUANG, Ping Shen |
.explain-selected-button.explain-selected-text-selected-show-button { display: block !important; } .explain-selected-button.explain-selected-expanded { width: 400px; border: 0px; cursor: default; height: 350px; overflow: auto; box-shadow: rgba(15, 15, 15, 0.05) 0px 0px 0px 1px, rgba(15, 15, 15, 0.1) 0px 3px 6px, rgba(15, 15, 15, 0.2) 0px 9px 24px; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded) { width: 35px; height: 35px; background: transparent; border-radius: 50%; opacity: 0.5; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded):hover::before { content: ""; position: absolute; width: 35px; height: 35px; background-color: rgba(128, 0, 128, 0.5); border-radius: 50%; top: 50%; left: 50%; transform: translate(-50%, -50%); animation: explain-selected-growAndFade 2.0s ease-in-out; animation-iteration-count: infinite; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded)::after { content: ""; position: absolute; width: 10px; height: 10px; background-color: rgb(128, 0, 128); top: 50%; left: 50%; transform: translate(-50%, -50%); border-radius: 50%; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded):hover::after { width: 14px; height: 14px; } @keyframes explain-selected-growAndFade { 0% { width: 10px; height: 10px; opacity: 1; } 100% { width: 30px; height: 30px; opacity: 0; } } .explain-selected-button { display: none !important; width: 120px; height: 28px; border-radius: 4px; border: 0px; position: absolute; z-index: 9999; opacity: 1; cursor: pointer; background: white; text-align:left; font-family: Tahoma,Arial,Helvetica Neue,Helvetica,sans-serif; background-color: #fff; color: #333; } .swal2-icon-show-explainselected { border: none; } .swal2-container p { margin: 0 !important; }