MS-000 General Papers
A new Hamiltonian global nodal position finite element method for dynamics analysis of submarine cables | |
Hang Zhou, Xue Yan, Dean Hu, Xu Han |
MS-001 Theory and Formulation for Novel Computational Methods
Studies on interface of pipe joints based on exponential softening bond-slip law under torsional loads | |
Hong Yuan, Jun Han, Ziyong Mo, Lan Zeng |
MS-004 Boundary Element Methods and Mesh Reduction Methods
The kernel-based collocation methods for elastic wave obstacle scattering problems | |
Jing Zhang, Siqing Li, Junhong Yue |
A FEM-SPH coupling approach for dynamic response analysis of composite plates with brick-and-mortar structure | |
Yihua Xiao, Wenbing Zou |
MS-006 Crash safety and structural optimization
Structural topology optimization method considering bi-modulus properties of materials | |
Xuanpei Rong, Jing Zheng |
MS-009 Computational Methods in Fluid Engineering
GPU Parallel Study of Explicit and Implicit Solution of Poisson Equation in Particle Method | |
Zi-kai Xu, Zhe Sun, Xi Zhang, Bi-ye Yang, Gui-yong Zhang, Zhi-fan Zhang |
MS-015 Smoothed Finite Element Methods and Related Techniques
A node-based smoothed finite element method (NS-FEM) for free and forced vibration analysis of three-dimensional (3D) structures | |
J.G. Zhao, Z.R. Li, S.H. Huo |
MS-018 Data, Uncertainty, Machine Learning and Digital Twin
Deep learning for reliability analysis with epistemic uncertainty | |
li chen, zhe zhang, gang yang |
MS-024 Meshfree and Other Advanced Numerical Methods for Engineering and Applied Mathematical Problems
Dynamics analysis of a FGM rectangular Mindlin plate undergoing large overall motion in temperature field | |
chaofan du, Yanlong Zheng, Dingguo Zhang, Tingkui Cao |
MS-027 Computational Acoustics and Elastodynamics in Materials and Structures
Free Vibration of Steel Pipe Piles Using the State Space Method | |
Kexuan Zhao, Jinbiao Cai, Rongqiao Xu |
Acoustic scattering of underwater multiple spheres using T-supermatrix method | |
Yuzheng Yang, Yang Zhang, Wei Li |
MS-036 Mechanics of soft materials
Enhanced Flexoelectricity by pre-stretch in Elastomers | |
Hui Ji, Shuwen Zhang, Minglong Xu |
MS-039 Computational Particle Dynamics
Comparison of surface tension discrete models for the ISPH-FVM coupling method | |
Yixiang Xu, Gang Yang, Chen Zhuang, Dean Hu, Shuang Liu |
Three dimensional simulation of liquid droplets impact on elastic structures based on the SPH method | |
Xiangwei Dong, Xin Zhang, Ran Yu |
Numerical modeling of 3D natural convection in a horizontal concentric annulus with a GPU-accelerated SPH method | |
Yibo Ma, Zhilang Zhang, Moubin Liu |
A new kernel function of smoothed particle hydrodynamics for modeling liquid dynamics | |
Chaoyang Guo, Huashan Zhang, Moubin Liu |
MS-041 Multiscale multiphysical damage and fracture simulation of cementitious composites
Mesoscale failure simulation of UHPFRC with explicit modelling of cohesive fibre-matrix interfaces | |
Xin Zhang, Zhenjun Yang, Zhenyu Wang |
Direct Validation of 3D Meso-scale Fracture Modelling of UHPFRC by In-situ Micro X-ray CT Wedge-split Tests | |
Mo Lin, Zhen Jun Yang, Xin Zhang |
MS-042 Uncertainty quantification and analysis for structures
Robust topology optimization for multi-scale structure considering both thermal and mechanical loadings | |
Jing Zheng, Shaonan Ding, Chao Jiang |
An enhanced derivative λ-PDF method for uncertainty quantification and analysis of mechanical structures | |
Dequan Zhang, Junkai Jia, Xu Han |
Enhanced probabilistic uncertainty propagation through gaussian mixture model | |
chen quan, zhang zhe |
MS-044 Micro-/Nano-mechanics for Novel Materials
The Bending Limit of 2D Diamane | |
Haifei Zhan, Shangchun Jiang |
.explain-selected-button.explain-selected-text-selected-show-button { display: block !important; } .explain-selected-button.explain-selected-expanded { width: 400px; border: 0px; cursor: default; height: 350px; overflow: auto; box-shadow: rgba(15, 15, 15, 0.05) 0px 0px 0px 1px, rgba(15, 15, 15, 0.1) 0px 3px 6px, rgba(15, 15, 15, 0.2) 0px 9px 24px; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded) { width: 35px; height: 35px; background: transparent; border-radius: 50%; opacity: 0.5; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded):hover::before { content: ""; position: absolute; width: 35px; height: 35px; background-color: rgba(128, 0, 128, 0.5); border-radius: 50%; top: 50%; left: 50%; transform: translate(-50%, -50%); animation: explain-selected-growAndFade 2.0s ease-in-out; animation-iteration-count: infinite; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded)::after { content: ""; position: absolute; width: 10px; height: 10px; background-color: rgb(128, 0, 128); top: 50%; left: 50%; transform: translate(-50%, -50%); border-radius: 50%; } .explain-selected-button.explain-selected-circle:not(.explain-selected-expanded):hover::after { width: 14px; height: 14px; } @keyframes explain-selected-growAndFade { 0% { width: 10px; height: 10px; opacity: 1; } 100% { width: 30px; height: 30px; opacity: 0; } } .explain-selected-button { display: none !important; width: 120px; height: 28px; border-radius: 4px; border: 0px; position: absolute; z-index: 9999; opacity: 1; cursor: pointer; background: white; text-align:left; font-family: Tahoma,Arial,Helvetica Neue,Helvetica,sans-serif; background-color: #fff; color: #333; } .swal2-icon-show-explainselected { border: none; } .swal2-container p { margin: 0 !important; }