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Abstract 
The efficiency and accuracy are usually regarded as two general indices to check 
capability of a numerical method with respect to the time integration. The traditional 
numerical manifold method (NMM) employs implicit scheme to obtain high 
computational accuracy, but the efficiency is relatively low, especially when the 
iterations of contacts are involved. In this paper, the temporal coupled explicit-
implicit (E-I) algorithm is proposed, in which the time integration schemes, transfer 
algorithm and contact algorithm are studied, respectively. A few numerical examples 
are simulated using the proposed coupled algorithms, in which one calibration 
example is studied with respect to the coupled temporal based on the cover system. 
The simulated results are well agreement with the implicit and explicit algorithms 
simulations, but the efficiency is improved evidently. It is predicted that the proposed 
couple E-I algorithm can be applied for larger scale engineering systems to combine 
the merits of both the implicit and the explicit algorithms of the NMM.  

Keywords: Computational efficiency; Computational accuracy; Explicit algorithm; 
Implicit algorithm; Numerical manifold method. 

Introduction 
The efficiency and accuracy are usually regarded as two indices to check capability of 
a numerical method in terms of time integration for dynamic problems. In general, 
there are two classes of time integration algorithms for dynamic problems: implicit 
and explicit (Gelin et al, 1995). Implicit algorithms possess such as the continuum-
based finite element method (FEM) and discontinuum-based discontinuous 
deformation analysis (DDA), explicit algorithms such as finite difference method 
(FDM) and discrete element method (DEM). It is noted when more contact problems 
are involved in the discontinuum-based methods such as DDA and DEM, the 
efficiency is significantly declined. Thus, how to treat the contact problems balancing 
the efficiency and accuracy, an appropriate time integration algorithm is required. 

In the present study, the numerical manifold method (NMM) is considered to 
combine the both time integration algorithms. The traditional NMM is originally 
proposed by Shi (1991, 1992). It employs the implicit time integration and open-close 
contact iteration for the simulations of complicated dynamic problems. Since the 
implicit scheme requires the assembling of the coupled global stiffness matrix for the 
governing equations, which may involve many thousand DOFs, especially when such 
more contact problems and nonlinear problems are encountered, the computational 
cost can be increased dramatically. Thus, the choice of an appropriate algorithm is 
essential to ensure efficiency and robustness of the numerical simulations, but the 
difficulty resides in being able to combine robustness, accuracy, stability and 
efficiency of the algorithms. The distinction between explicit and implicit where we 
have considered is that the explicit uses a diagonal mass matrix and the implicit 
applies a consistent inertia matrix (Liu and Belytschko, 1982). Then, a temporal 
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coupled E-I algorithm for the NMM based on the dual cover system is proposed, in 
which different time steps, time integration schemes are applied in temporal 
discretization. Then, some calibration examples and numerical simulations are 
studied to validate the coupled E-I algorithms. 

Basic Concept of the NMM and Its Dual Cover System 
In the traditional NMM, one manifold element is generated through a set of 
overlapping covers, which is the distinct characteristic differs from other numerical 
methods. As shown in Figure 1(a), the mathematical cover system, which is united by 
six rectangle patches denoted by , , , ,  and  respectively. The 
overlapping patches cover the whole material domain Ω without considering any 
physical properties, so any arbitrary shape of mathematical cover can be chosen. And 
then, physical covers can be obtained from these mathematical covers intersect with 
the physical domain Ω, a manifold element can be produced as the common area of 
physical covers. Each small rectangle patch is termed as a mathematical cover (MC), 
denoted by iM (i= 1, 2, 3, …, 6). External boundary and internal joints or cracks may 
intersect one MC into several separate sub-patches, then each one within the material 
domain is termed as a physical cover (PC), denoted by j

iP ( Nj∈ ). As can be seen in 
Figure 1(b), material domain Ω is intersected by patch  to generate one PC within 
its material domain, denoted by 1

1P . When the internal discontinuities (i.e. cracks or 
joints) are taken into accounted in the NMM, each discontinuous boundary is 
considered as one special material domain to form a new PC. If the crack passes 
through the whole patch within the material domain, two isolated PCs form by the 
crack surface just as 4M  and 6M  , two separated PCs, denoted by 1

4P , 2
4P  based on 4M  

and 1
6P , 2

6P  based on 6M , respectively. On the other case, when the crack cuts MC 
partially, only one PC forms within the material domain, which can be seen by 2M , 

3M  and 5M , only one PC generates denoted by 1
2P , 1

3P  and 1
5P  respectively. 

Furthermore, the common area of several overlapping PCs is termed as a manifold 
element (ME). 
 
 
 
 
 
 
 
           (a) General cover system in the NMM;   (b) Generation of physical covers for the NMM 

Figure 1. Cover system of the NMM. 
For convenience, a regularly structured mesh is employed in the NMM which is 
similar as that in the FEM. A regularly-patterned triangular mesh is employed, in 
which each MC is defined through six triangular elements sharing a common node 
(i.e. nodal star). Each cover has two degree of freedom is similar as node property in 
the FEM, each element formed by the overlapping of three neighboring hexagonal 
covers has six degree of freedom for the second order time integration. The 
mathematical mesh covers the whole physical domains form PC system. The common 
areas are formed by the neighboring three hexagonal MCs combined with the material 
domains. When the linear triangular element weight function is applied based on 
cover system, the global displacement function over a ME can be expressed as  
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 is the displacement function on the three associated PCs. Here, it is 

the cover system makes the solution for both continuous and discontinuous problems 
practicability without any re-meshing technique used in the FEM. 

Temporary Coupled Explicit-Implicit Algorithm in the NMM 
The Coupled Explicit-Implicit Algorithm 
For the different problems, there are two types of coupled approaches can be 
considered: implicit-explicit (E-I) algorithm and explicit-implicit (I-E) algorithm. 
When different approaches are employed, the different step time scale can be applied 
into the corresponding time integration scheme. To investigate the temporal couples 
algorithm, the E-I algorithm is taken into account in the present study. Furthermore, 
the Newmark- β  methods (Newmark, 1959) with two characteristic parameters β  
and γ  for all sub-domains are assumed here. As is shown in Figure 2, initial diagonal 
mass matrix and force vector are constructed for the explicit algorithm (Ma and Qu, 
2013), then the explicit central difference method, i.e. the Newmark method with the 
parameters 01 =β and 2/11 =γ , is employed from the initial step time 0t  to nt at the 
step number n to simulate the high frequency part of the dynamic problems. And 
then, the explicit integration algorithm switches to the implicit, in which the transfer 
algorithm is proposed in order to achieve the conservation of the kinematic energy 
from the explicit to implicit integration, and 

IE DD = , 
IE vv =  and IE σσ =  are satisfied 

for the coupled E-I integration without the element and node partition. Thus, it is 
convenient to achieve in the programming. In the part of the implicit integration from 
step time 

1+nt  to rnt +
, the constant acceleration method with the parameters 2/12 =β  and 

12 =γ is used in the implicit integration by the end of step )( rn +  for the low 
frequency and quasi-static problems. Continuing the explicit procedure, the initial 
inertial, stiffness matrix and force vector for the implicit integration are require to 
construct again as the difference items in the equations of motion. It is noted that 
different step time sizes are adopted before and after the transition in the couples E-I 
algorithm in terms of the numerical stability and accuracy, respectively. Normally, 
the step time size 

It∆  in the implicit algorithm is larger than Et∆  in the explicit 
algorithm, which denotes 

EI tt ∆⋅=∆ α , 1>α is the coefficient to describe the scale 
between the implicit and explicit integrations. Sequentially, the transfer algorithm of 
the coupled E-I integration is exposed and discussed in the following section. 
 

 

 

 

 

Figure 2. Transfer algorithm from the explicit to implicit scheme. 
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Transfer Algorithm for the E-I Algorithm 
In the coupled E-I method, we employ the explicit algorithm to model motion of the 
system at the early stage, followed by the implicit algorithm to simulate the 
subsequent motions of the system.  Thus, an explicit physical model in the NMM will 
be transferred to the implicit one at a certain time so that the coupled method is more 
efficient. In the transition, the geometric configurations, physical and mechanical 
parameters, and status, including stress state and velocities, are consistent and 
continue. Therefore, the transfer algorithm is required to satisfy the kinetic energy 
and potential energy conservation from the explicit integration to the implicit one, 
which can be represented as 
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where E
iM  and I

iM are the i-th explicit and implicit element mass, respectively; E
xv , E

yv  
and I

xv , I
yv  are the velocity components of an explicit element and implicit element in 

the x and y directions, respectively; ∏E
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components of the explicit and implicit elements respectively. Furthermore, equations 
of I
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xy ττ = are satisfied in the transfer algorithm 

to ensure the parameters of the terms are consistent and the computation is 
continuous.  

Contact Algorithm for the Coupled Scheme 
Contact Force Calculation 
As previously mentioned, contact detection and contact force calculations are done by 
the NMM. Once contacts have been detected, a contact interaction algorithm is 
employed to evaluate contact forces between the contact elements. A thorough 
discussion and formulations of these approaches can be found in (Munjiza, 2004). 

For a discrete block system involving m elements, there are N contact pairs have been 
detected to an element i ( mi ,2,1= ). Here, we assume one element denoted by j 
( Nj ,2,1= ) and i are detected in contact state, ][ cK  between i and j can be expressed 
as  
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in which ][ c
ijK  is defined by the contact spring between the contact elements i and j, 

and the value is zero if the elements i and j have no contact. Since each element is 
consisted by three associated PCs, thus the matrix ][ c

ijK  is a 6×6 sub-matrix and the 
derivation of the matrix ][ c

ijK  will be discussed in detail at the following section. It is 
noted that the displacement }{ 1+nD  on the three associated PCs can be predicted using 
the Verlet algorithm by the previous step n. Then, contact forces associated with ][ c

ijK  
on the contact element i are assembled as 
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The total internal forces on the element i can be represented as  
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in which }~{ iI  is the element internal force vectors and ][ e
iiK  is the stiffness matrix of 

element. Since each element is formed by the three associated PCs, thus }~{ iI  can be 
rewritten as 
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in which }~{ )1(iI  maps the first PC associated the element, the subsequent }~{ )2(iI  and }~{ )3(iI  
map the second and third PCs, respectively. Then, }~{I  at each PC can be assembled 
by the associated }~{ iI  on the cover system. 

Damping Algorithm 
It is noted that the explicit scheme employs dynamics method to solve the uncoupled 
equations, in which the generated kinetic energy can not be neglected. To the static or 
quasi-static problems, it requires the physical damping to adsorb the kinetic energy of 
the systems so that the systems achieve stable condition. As in reference (Cundall, 
1982), we suggest an alternative scheme to simulate the damping, in which the 
damping force with the unbalance force or inertial force is in direction proportion, 
and the damping item of each MC in the NMM can be expressed as 

}|]{[}{
0teed DMF ζ−=                                              (7) 

where }{ dF is the damping force matrix, }|{
0teD is the element initial acceleration vector 

at the start of the time step. The total potential energy from the damping item is 
summered by each element, which can be written as  
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Substituting Equation (8) using the variational principle, the equivalent damping 
force matrix can be described as 
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which is a 16× matrix to produce external force item. 

Numerical Examples 
Calibration of the Coupled Algorithm 
In order to calibrate the proposed coupled E-I algorithm for the temporal problems, 
one Newmark sliding modelling of block sliding under input horizontal acceleration 

Ha  is studied here. A block rests on an inclined plane is taken into account as a first 
approximation of the Newmark sliding model. The angle of the plane is 31.470. And a 
sinusoidal seismic acceleration Ha is employed to impose the fixed point as expressed 
in Equation (10), where g is the gravity acceleration, t is the simulation duration for 
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the simulation. In this study, we assume the frictional angle 030=φ , the total 
displacement of analytical solutions can be referred in (Newmark, 1959; An et al, 
2011), then the simulated results of the proposed E-I NMM can be obtained as shown 
in Figure 3. It is noted that when the E-I algorithm is considered, the proposed 
transfer algorithm is employed from the explicit to implicit algorithm at the time of 

st 1= , and the final results of the simulations are well agreement with the analytical 
solution. 
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Figure 3. Block displacement under horizontal ground acceleration. 

Open-pit Mining Stability Analysis 
In this simulation, one open-pit mine slope modeling is assumed to study the stability 
using the proposed E-I algorithm. As shown in Figure 4, there are 9 layers denoted by 
1# to 9# separate the whole modeling, in which we assume the layer 4# is the fracture 
zone constituted by many discontinuous joints. The inclined angle of the slope is 42° 
and drop is 120 m. In order to investigate the effect of the fracture zone to stability of 
the slope, two models of layer 4# are represented in Figure 5. Integrated Model 
considers the whole layer as one domain, on the other hand, Refined Model adds 
more joints into the layer to approach the realistic condition, in which a set of joints 
with orientation of 32.470 are constructed as seen Figure 5 to simulate the fractured 
zone of the open-pit slope. 
 
 

 

 

 

 

Figure 4. Geology section of the open-pit mining. 

 

 

 

 

   Figure 5 Study model of the layer 4#.             Figure 6 Input seism acceleration. 
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Traditional methods apply to the slope stability analysis is to determine the factor of 
stability (FoS) of the slope using the limit equilibrium method (LEM) without 
considering the effect of the dynamic loading with time history (i.e. seismic loading, 
blasting loading, etc). Here, the FoS is computed using the LEM to the integrated 
model, FoS can be determined as 1.436 and 2.182 by cases of 100 and 150 of joint 
frictional angle. To further investigate the stability of the slope under the earthquake, 
a stochastic horizontal seismic acceleration with maximum value of 0.2g is applied as 
shown in Figure 6.The detailed of physical parameters such as unit weight is 26.0 kN/ 
m3, Young’s modulus is 1.0 GPa, Possion’s ratio is 0.2, Joint normal stiffness is 1.0 
GPa and Joint shear stiffness is 0.5 GPa, respectively.  

To investigate the instability of the fracture zone under earthquake loading, the 
measure points selected in the fracture zone and the displacements of them at both 
cases of ϕ=100 and ϕ=150 are presented in Figure 7 and 8, respectively. It is verified 
that the proposed E-INMM satisfies the computational accuracy comparing with the 
original NMM. We can find that the slope is instable at the case of ϕ=100 whether 
static or dynamic states, but the slope approaches to be stable after the seismic 
loading at the case of ϕ=150. Thus, the fractured zone should be taken into account to 
the design of the open-pit slope to improve the stability of slope. 

 
 

 
 

 
 
 

Figure 7. Simulations for Refined Model (Total time: 20s). 
 

                  
                            (a) ϕ=100;                                                    (b) ϕ=150. 

Figure 8. Measured point 1 in the Refined Model. 
With respect to the efficiency of the proposed algorithms, CPU time is taken into 
consideration to check the computational cost of the algorithms. All three algorithms 
are run on the same computer with the system configuration: processor speed = 4.0 
GHz and RAM = 4.0 GB. As represented in Table 1, the proposed E-I algorithm is 
more efficient comparing the explicit and implicit algorithms in the refined model 
with both cases of ϕ=100 and ϕ=150. In particular, E-I algorithm can be considered as 
one computational criteria for the large scale engineering as it combines the merits of 
both the explicit and implicit algorithms in terms of accuracy and efficiency of the 
computations dramatically. 
 
 
 
 

ϕ=100 ϕ=150 
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Table 1. CPU cost for the different cases (hr.). 
 
 
 
 
 

Conclusions 
The temporal coupled explicit and implicit algorithm for the numerical manifold 
method (NMM) is proposed in this paper. The time integration schemes, transfer 
algorithm, contact algorithm and damping algorithm are studied in the temporal 
coupled E-I algorithm to combine both merits of the explicit and implicit algorithms 
in terms of efficiency and accuracy. Then, some numerical examples are simulated 
using the proposed coupled algorithms, in which one calibration example is studied 
with respect to the coupled temporal based on the dual cover system. One numerical 
example of open-pit slope seismic stability analysis using the coupled E-I algorithm is 
investigated as well. The simulated results are well agreement with the implicit and 
explicit algorithms simulations, but the efficiency is improved evidently. It is 
predicted that the couple E-I algorithm proposed in the present paper can be applied 
into larger scales engineering systems to combine the merits of both the implicit and 
explicit algorithms in the NMM. 
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Study 
Case 10°  15° 

ICPU   ECPU   IECPU −   ICPU   ECPU   
IECPU −  

Refined
Model 1.467  1.376  0.882  1.816  1.515  0.911 
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