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Abstract 

A dual-reciprocity boundary element method is outlined for solving a class of initial-boundary 
value problems concerning axisymmetric thermoelastodynamic deformations in functionally graded 
materials. The time derivatives of the temperature and the displacement, which appear in the 
governing partial differential equations, are suppressed by using the Laplace transformation 
technique. In the Laplace transform domain, the problem under consideration is formulated in terms 
of integral equations which contain both boundary integrals and domain integrals. The dual-
reciprocity method is used together with suitably constructed interpolating functions to reduce the 
domain integrals approximately into boundary integrals. The problem under consideration is 
eventually reduced to linear algebraic equations which may be solved for the numerical values of 
the Laplace transforms of the temperature and the displacements at selected points in space. The 
temperature and the displacement in the physical time domain are approximately recovered by 
using a numerical method for inverting Laplace transforms. To check that the numerical procedure 
presented is valid, it is applied to solve a specific test problem which has a closed-form analytic 
solution. 

Keywords: Boundary element method, Dual-reciprocity method, Interpolating functions, Laplace 
transformation, Axisymmetric thermoelasticity, Functionally graded materials.  

 

Introduction 

 
In recent years, there has been considerable interest in the analysis of axisymmetric materials 
possessing material properties that are graded continuously along the axial and radial directions. For 
example, Clements and Kusuma (2011) studied the axisymmetric deformation of an elastic half 
space having elastic moduli that vary as a quadratic function of the axial coordinate; Matysiak, 
Kulchytsky-Zhyhailo and Perkowski (2011)  considered the Reissner-Sagoci problem for a 
homogeneous layer bonded to an elastic half space with a shear modulus that varies axially in 
accordance with a simple power law; and Keles and Tutuncu (2011) calculated the dynamic 
displacement and stress fields in hollow cylinders and spheres with material properties that are 
functionally graded along the axial direction by a simple power law.  
 
In the present paper, the dual-reciprocity boundary element approach and the interpolating functions 
proposed in Yun and Ang (2012) for solving an axisymmetric thermoelastostatic problem involving 
functionally graded materials is extended to thermoelastodynamic deformations. The material 
properties vary with the axial and radial coordinates following sufficiently smooth functions in 
general forms. 
 
It may be of interest to note that a boundary element solution of the corresponding two-dimensional 
thermoelastodynamic problem for functionally graded solids may be found in a very recent paper by 
Ekhlakov. Khay, Zhang, Sladek and Sladek (2012). 
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Basic equations of axisymmetric thermoelastodynamics 

 
With reference to the cylindrical polar coordinates ,r   and ,z  the temperature T  and the 

displacement u  in an isotropic solid that is symmetrical about the z axis is independent of   and 

the only non-zero components of the displacement u  are given by ru  and zu . If the material 

properties of the solid are radially and axially graded using sufficiently smooth functions of r and 
,z  the governing partial differential equations of axisymmetric thermoelastodynamics are given by 
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, t  is the time coordinate, 0T   is a constant reference temperature at 

which the body does not experience any thermally induced stress, the coefficients ,  ,  , ,c   
and   are respectively the thermal conductivity, stress-temperature coefficient, density, specific 

heat capacity, Poisson's ratio and shear modulus of the isotropic body,  rF   and zF   are respectively 

the r and the z components of the body force, and Q  is the internal heat generation term. Note that 
,  ,  , c  and   are, in general, functions of r and z  and the Poisson’s ratio   is assumed to be 

constant.  The body force components rF  and zF  and the internal heat generator Q  are, in general, 

functions of the axisymmetric coordinates r and z  and the time coordinate t . 
 
Details on the basic equations of thermoelasticity may be found in Nowacki (1986). 
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Boundary-domain integral equations 

 
The governing partial differential equations in (1), (2) and (3) in terms of the boundary-domain 
integral equations 
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where   is the solution domain on the Orz plane,   is the boundary of   (excluding the part that 
lies on the z  axis), rn and zn  are respectively the r and z components of the unit normal outward 

vector to curve  at the point ( , ),r z 0 0 0( , ; , )G r z r z is the fundamental solution of axisymmetric 

Laplace’s equation, 1 0 0( , ; , ; , )r zG r z r z n n is the normal derivative of 0 0 0( , ; , )G r z r z along the direction 

of the vector [ , ]r zn n , the uppercase Latin subscripts (such as K ) are assigned values r and z and 
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summation over those values are implied for repeated subscripts, 0 0( , ; , )JK r z r z  is the fundamental 

solution of the partial differential equations for axisymmetric elastostatics, 0 0( , ; , ; , )JK r zr z r z n n is 

the traction function corresponding to 0 0( , ; , ),JK r z r z  and ( , , ; , ),J r zp r z t n n  ( , )JNX r z  and 

( , )JNY r z  are defined by 
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The functions ),;,,( zrJ nntzrp  are related to the axisymmetric tractions  ),;,,( zrJ nntzrt  through 
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where  JN   is the Kronecker-delta. 

 
The boundary-domain integral equations in (4) and (5) for the corresponding case of axisymmetric 
thermoelastostatic deformations are given in Yun and Ang (2012) where the details of the functions 

0 0 0( , ; , ),G r z r z 1 0 0( , ; , ; , ),r zG r z r z n n 0 0( , ; , )JK r z r z  and 0 0( , ; , ; , )JK r zr z r z n n  are explicitly written 

out. 
 

Dual-reciprocity boundary element method 

 
The dual-reciprocity method in Partridge, Brebbia and Wrobel (1992) may be employed to 
approximate the domain integrals over   in the integral equations (4) and (5) in terms of boundary 
integrals over the curve   by using interpolating functions centered about selected collocation 
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points in .  As in Yun and Ang (2012), the collocating functions centered about the n-th 
collocation point,  denoted by ( ) ( , ),n r z  ( ) ( , ),n r z ( ) ( , )n
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sufficiently smooth and are required to satisfy the partial differential equations 
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In Agnantiaris, Polyzos and Beskos (2001) and Wang, Mattheij and ter Morsche (2003), the 
interpolating functions ( ) ( , ),n r z  ( ) ( , ),n r z ( ) ( , )n

KJ r z and ( ) ( , )n
KJ r z  are constructed by integrating 

axially selected radial basis functions in three-dimensional space. The interpolating functions thus 
constructed are well defined at 0,r  but they are in highly complicated forms and are expressed in 
terms of special functions given by the elliptic integrals. 
 
To construct interpolating functions expressed in terms of relatively simple elementary functions, 
one may choose ( ) ( , )n r z and ( ) ( , )n

KJ r z to be sufficiently smooth functions of 
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this manner are not well defined at 0r  . This poses a problem if the z axis is part of the solution 
domain .  In Yun and Ang (2012),  the singular behaviors of  ( ) ( , )n r z and ( ) ( , )n
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For a numerical procedure for solving initial-boundary value problems governed by (1), (2) and (3), 
we apply the Laplace transformation on the boundary-domain integral equations (4) and (5) to 
suppress the time derivatives of ,T  ru  and ,zu  use the dual-reciprocity method together with the 
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interpolating functions constructed using (10) to approximate the domain integrals in the resulting 
boundary-domain integral equations in terms of boundary integrals, and discretize the boundary   
into elements to develop a boundary element procedure for finding the temperature and the 
displacement in the Laplace transform domain. The temperature and the displacement in the 
physical domain may be recovered by using a numerical method for inverting Laplace transforms.  
 

Test problem 

 
The coefficients of the partial differential equations in (1), (2) and (3) are chosen to be given by 
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It is easy to check that a solution of the partial differential equations is given by 
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For a specific initial-boundary value problem as a test problem, take the solution domain   to be 

,21  r  0 1,z    which is a rectangular region on the Orz  plane, and use the solution in (11) to 
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For the boundary element procedure, the sides of the rectangular region are discretized into 80 
straight line elements. The Laplace transforms of the temperature, heat flux, displacement and 
traction on the boundary elements are approximated using discontinuous linear functions. As many 
as 121 well distributed collocation points in  (including those on the boundary elements) are 
used in the dual-reciprocity method for converting approximately the domain integrals in the 
integral formulation of the initial-boundary value problem into boundary integrals. We use the 
numerical method in Stehfest (1970) to invert the Laplace transforms in order to recover the 
temperature and the displacement in the physical domain.  
 
Numerical values of  T  ,  ru   and  zu  obtained using the dual-reciprocity boundary element method 
(DRBEM) are plotted against t  ( 0 6t  ) at )5.0,5.1(),( zr  in Figures 1, 2 and 3 respectively. 
The numerical values agree well with the analytical solution in (11), showing that the interpolating 
functions given in (9) and (10) are employed successfully to treat the domain integrals in the 
boundary-domain integral equations in (4) and (5).  
 
 
 

 
Figure 1. A comparison of the numerical and exact T  at )5.0,5.1(),( zr  for 60  t . 
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Figure 2. A comparison of the numerical and exact ru  at )5.0,5.1(),( zr  for 60  t . 

 
Figure 3. A comparison of the numerical and exact zu  at )5.0,5.1(),( zr  for 60  t . 
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