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Abstract 
A crystal plasticity based finite element model (i.e., FE model) is used in this paper to simulate the 
cyclic deformation of polycrystalline aluminum alloy plates. The Armstrong-Frederick nonlinear 
kinematic hardening rule is employed in the single crystal constitutive model to capture the 
Bauschinger effect and ratcheting of aluminum single crystal presented under the cyclic loading 
conditions. A simple model of latent hardening is used to consider the interaction of dislocations 
between different slipping systems. The proposed single crystal constitutive model is implemented 
numerically into a finite element code, i.e., ABAQUS. Then, the proposed model is verified by 
comparing the simulated results of cyclic deformation with the corresponding experimental ones of 
a face-centered cubic polycrystalline metal, i.e., rolled 5083 aluminum alloy. In the meantime, it is 
shown that the model is capable of predicting local heterogeneous deformation in single crystal 
scale, which plays an important role in the macroscopic deformation of polycrystalline aggregates. 
Under the cyclic loading conditions, the effect of applied strain amplitude on the responded stress 
amplitude and the dependence of ratcheting strain on the applied stress level are reproduced 
reasonably. 
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Introduction 

It is significant to study the cyclic deformation of metals for their extensive uses as engineering 
components subjected to cyclic loadings. In the last decades, many researches have been 
accomplished to observe the cyclic deformation of metals both experimentally and theoretically. 
However, many existing constitutive models are phenomenological versions, such as Chaboche and 
Dang Van (1979), Chaboche and Nouailhas (1989), and Abdel-Karim and Ohno (2000). These 
models do not give direct insight into the physical mechanism of cyclic plastic deformation. 
Recently, Cailletaud and Sai (2008) and Kang et al. (2010) proposed crystal plasticity based 
constitutive models to investigate the ratchetting of polycrystalline alloys by adopting explicit scale 
transition rules. However, the employed explicit scale transition rules are formulated with some 
simple assumptions, which cannot capture the real physical nature of elastic and plastic 
accommodations occurred between single crystal grains. To consider such accommodations 
reasonably, a crystal plasticity finite element method is a good candidate.  
 
Therefore, in this work, based on the previous work done by Armstrong and Frederick (1966), 
Peirce et al. (1983) and Huang (1991), a micro-mechanically based cyclic single crystal visco-
plastic constitutive model is implemented numerically into the finite element (FE) code ABAQUS, 
to predict the responses of polycrystalline metals under cyclic strain-controlled and stress-controlled 
loading. The model is verified by comparing the FE simulations with corresponding experimental 
results of face-centered cubic (FCC) polycrystalline aggregates, i.e., rolled 5083 aluminum alloy 
plate, carried out in the previous work by Lu et al. (2013).   



Single crystal constitutive model 

In the framework of small perturbation, the total strain  ε  is divided additively into an elastic part εe 

and visco-plastic part εvp, i.e., 
vpe εεε +=                                                                  (1) 

The relation between the elastic strain εe and the stress σ  is given by the Hooke’s law  
σCε :1−=e                                                                  (2) 

where C  is the fourth-rank tensor of elastic moduli. Since the dislocation slip is the main source of 
plastic deformation for the aluminum alloy at low temperatures, the visco-plastic strain rate can be 
obtained via the following expression, 
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where αP  represents the orientation of the slip system α; αm  and αn  are the slip direction vector 
and the slip plane normal vector of the slip system α, respectively. In the case of FCC materials, the 
number of active slip system N, is no more than the total slip system number, 12. The resolved shear 
stress ατ acting on a particular slip system α, i.e., the Schmid stress, is given by the relation 

αατ Pσ :=                                                                    (5) 
The shear rate of each slip system αγ  can be related to the corresponding resolved shear stress 

ατ via a power law expression, 
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where αx  and αQ  are the kinematic and isotropic hardening variables of the slip system α, and are 
called as back resolved shear stress and isotropic deformation resistance, respectively. K and n are 
the material parameters that control the viscosity of the material.  
 
The isotropic hardening rule involves an interaction matrix αβH  which represents the interaction 
between the systems α and β. The evolution rule of the isotropic hardening variable is determined 
by the following formulation, 

∑
=

=
N

HQ
1β

βαβα γ                                                              (7) 

The initial value of αQ  means the initial shear yielding stress of each slip system, which is simply 
assumed as the same for all the slip systems in the model. The interaction hardening matrix αβH  is 
obtained from a simplified rule as shown in the work by Asaro (1983), i.e.,  

αβ
αβ δHqqHH )1( −+=                                                        (8) 

Whereas the nonlinear evolution rule of kinematic hardening is set to be similar to that proposed by 
Armstrong and Frederick (1966),  

αααα γγ  dxcx −=                                                              (9) 
where c and d are the material parameters assumed to be the same for all slip systems. The fading 
memory term αα γdx  makes it possible to describe the ratchetting behavior of materials.  
 
The proposed single crystal constitutive model is implemented numerically into the FE code 
ABAQUS via a user-defined material subroutine (UMAT), where the implicit integration is adopted.  



Finite element model 

Polycrystalline 5083 Al alloy may be viewed as an aggregation of single crystal grains with random 
crystallographic orientations, thus a 2D aggregation model is generated by using the Voronoi 
tessellation technique (Okabe et al. 1993), as shown in Fig. 1, where different colors indicate the 
grains with different orientations. To be consistent with corresponding experiments, the FE model is 
constructed as a rectangle plate with a size of 10 mm×6 mm. The FE mesh consists of 7040 first-
order plane-stress elements. 

 

Fig. 1. FE polycrystalline model (meshed)  
 

Fig. 2. Effect of number of grains on the 
stress-strain response 

To eliminate the effect of random orientations as much as possible, sufficient number of grains is 
needed. A series of FE analyses containing 20, 80, 100, 200 grains are performed under monotonic 
tensile loading to assess the appropriate number of grains. It is seen in Fig. 2 that the further 
increase in the number of grains hardly influences the obtained stress-strain curves when the 
number of grains is larger than 100. Considering the computational efficiency, the following 
simulations are all based on the model containing 100 grains. 
 
All material parameters used in the constitutive model for 5083 Al alloy are calibrated by trial-and-
error method from the experimental results obtained under the monotonic tension, one of cyclic 
strain tests, and one of cyclic stress tests. The obtained material parameters are given in Table 1. 
Since there is no accurate anisotropic stiffness constant of 5083 Al alloy single crystal, and the 
main concern is focused on the macro responses of the polycrystalline alloy, the elastic parameters 
here are set to be isotropic. All the experimental results are carried out by Lu et al. (2013), and 
more details about experiments are referred to their work.  

Table 1. Material parameters  

Elasticity Flow rule Isotropic 
hardening Interaction hardening Kinematic hardening 

E (MPa) 
70,000 

v 

0.3 
n 
50 

K (MPa) 
20 

Q0 (MPa) 
34 

H (MPa) 
100 

q 
0 

c (MPa) 
880 

d 
15 

Simulation and discussion 

To verify the validation of the model, the simulated results by the FE technique are compared with 
experimental ones of 5083 Al alloy plates obtained in the monotonic tension, uniaxial strain- and 
stress-controlled cyclic tests, respectively. 
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The simulated and experimental monotonic tensile stress-strain responses of polycrystalline 5083 Al 
alloy are shown in Fig. 3a at a strain rate of 0.015%/s. Clearly, the model simulation agrees quite well 
with the test data of monotonic tension. Fig. 3b shows the distribution of stress in the tensile direction 
when the macro monotonic tensile strain is 5%. Due to the different orientations of grains, the 
deformation is heterogeneous at both the inter-granular and intra-granular scales. From Fig. 3b it is 
seen that although the macroscopic state is in a tensile stress state, the heterogeneity still leads to a 
local microscopic compressive stress state. The load direction is denoted in Fig. 3b by a small arrow 
in the lower corner of right sideline. 

0 1 2 3 4 5
0

50

100

150

200

250

300

 

 

St
re

ss
 σ

, M
Pa

Strain ε, %

 Experiment
 Simulation

(a)

 

 
(b) 

Fig. 3. Monotonic tensile responses: (a) comparison of simulated and experimental stress-strain 
curves; (b) simulated stress contour in the tensile direction. 

The cyclic hardening behavior of 5083 Al alloy under uniaxial strain-controlled cyclic loading is then 
simulated and presented in Fig. 4 by plotting the stress-strain curves and variation of stress amplitude 
with the number of cycles. The strain rates in the load cases shown in Fig. 4 are fixed at 0.15%/s, the 
same as that used in the corresponding experiments.  
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Fig. 4. Simulated and experimental responses under the strain-controlled cyclic loading: (a) 

cyclic stress-strain curves with a strain amplitude of 0.3%; (b) responded stress amplitude vs. 
number of cycles with different strain amplitudes. 

Form Fig. 4a it can be found that the simulated hysteresis loops are a little wider than the 
experimental ones. This is caused by the delayed response of test machine and the practical peak 
strain cannot reach the prescribed value, especially in the first cycle. Fig. 4b shows the evolution 
curves of responded stress amplitude vs. number of cycles with three various applied strain 



amplitudes. It is seen from Fig. 4b that the model provides a reasonable simulation to the cyclic 
hardening feature of the alloy, that is, the responded stress amplitude increases with the number of 
cycles, and the value of responded stress amplitude increases with the applied strain amplitude.  

Finally, the ratchetting of 5083 Al alloy plates under the uniaxial stress-controlled cyclic loading with 
non-zero mean stress is predicted in the load cases with various mean stresses and stress amplitudes 
and compared with corresponding experiments. The results are shown in Fig. 5, and the stress rates in 
all the load cases are fixed at 80MPa/s, same as that used in the corresponding experiments. The 
comparison between simulated and experimental stress-strain hysteresis loops in the load case with a 
mean stress of 20MPa and stress amplitude of 160MPa is shown in Fig. 5a. It is seen from Fig. 5a that 
although the simulated loops are fatter than the experimental ones, the evolutionary process, that is 
the loops become narrower and narrower with the increasing number of cycles, is well simulated. The 
ratchetting strain obtained with various mean stresses and stress amplitudes are shown in Fig. 5b. It 
should be noted that the ratchetting strain εr is defined as εr=(εmax+εmin)/2, where εmax and εmin are the 
maximum and minimum strains of each cycle, respectively. From Fig. 5b, it is concluded that the 
model can provide a reasonable simulation to the evolution of the uniaxial ratchetting and its 
dependence on the applied mean stress and stress amplitude. Or, specifically, the features include: (1) 
the ratchetting strain increases with the number of cycles, while its rate decreases as the number of 
cycles increases; (2) the ratchetting strain increases with the mean stress when the stress amplitude is 
fixed, and it also increases as the stress amplitude increases with a fixed mean stress; (3) after a 
certain number of cycles, the value of ratchetting strain hardly changes and the evolution of ratcheting 
falls into a stable state.  
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Fig. 5. Simulated and experimental ratchetting under cyclic stressing: (a) cyclic stress-strain 

curves; (b) curves of ratchetting strain vs. number of cycles. 

Conclusion 

In this paper, a crystal plasticity based cyclic visco-plastic constitutive model is implemented 
numerically into the finite element code, to predict the mechanical responses of polycrystalline metals 
under cyclic loading. A two-dimensional finite element aggregation consisting of 100 randomly 
orientated grains constructed by the Voronoi tessellation method is used to represent the 
polycrystalline metal. By comparing the FE simulated results with corresponding experimental ones, 
it is demonstrated that the model provides fairly good simulations to the macroscopic stress-strain 
responses of 5083 Al alloy plates under monotonic tension, the cyclic hardening feature presented 
under the strain-controlled cyclic loading, and the ratchetting occurred under the stress-controlled 
cyclic loading. Additionally, a local heterogeneous deformation is observed due to the orientation 
mismatch between the neighboring grains.  
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