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Abstract 

An edge-based smoothed finite element method (ES-FEM) using 3-node triangular element was 
recently proposed to improve the accuracy and convergence rate of the standard finite element 
method (FEM) for 2D elastic solid mechanics problems. In this research, ES-FEM is extended to 
the large-deformation plasticity analysis, and a selective edge-based / node-based smoothed finite 
element (selective ES/NS-FEM) method using 3-node triangular element is adopted to address the 
volumetric locking problem. Validity of ES-FEM for large-deformation plasticity problem is proved 
by benchmarks, and numerical examples demonstrate that, the proposed ES-FEM and selective 
ES/NS-FEM method possess (1) superior accuracy and convergence properties for strain energy 
solutions comparing to the standard FEM using 3-node triangular element (FEM-T3), (2) better 
computational efficiency than FEM-T3 and similar computational efficiency as FEM using 4-node 
quadrilateral element and 6-node quadratic triangular element, (3) a selective ES/NS-FEM method 
can successfully simulating severe element distortion problem, and address volumetric locking 
problem in large-deformation plasticity analysis. 
Keywords: Large-deformation plasticity, Finite element method (FEM), Edge-based smoothed 
finite element method (ES-FEM), Volumetric locking, Gradient smoothing. 

Introduction 

Numerical simulation of finite-deformed material has attracted numerous research efforts. The finite 
element method (FEM) has been developed during last decades to deal with material and geometric 
nonlinear problem. Usually, lower order elements, especially 3-node linear triangular element (T3) 
for 2-D problem and 4-node linear tetrahedron element (T4) for 3-D problem, are attractive in 
practical engineering problems because of their intrinsic simplicity, easy preprocessing, and lower 
requirement on solution regularity. However, the use of T3 or T4 element is highly limited in the 
large deformation plasticity analysis, because of disadvantages such as convergence problem, 
element distortion and volumetric locking. Therefore, developing techniques to optimize the linear 
triangular element is a significant job, and lower order elements with superior accuracy and 
convergence properties are powerful tools for the simulations of contact-impact, crack 
propagations, material fracturing progressing, large scale multi-physics etc. 
 
In order to overcome the limitations of FEM, various technologies have been proposed. The strain 
smoothing technique was used for stabilizing the nodal integrated meshfree method (Chen JS, Wu 
CT et al. 2001) and then applied in the natural element method (Yoo JW, Moran B et al. 2004). Liu 
et al. has generalized a gradient (strain) smoothing technique (Liu GR 2008) and applied it in 
general meshfree settings to accommodate discontinuous shape functions (Liu GR 2009). Applying 
the same technique to the finite element method, an edge-based smoothed finite element method 
(ES-FEM)(Liu GR, Nguyen-Thoi T et al. 2009) has been formulated based on the gradient (strain) 
smoothing technique for static, free and forced vibration analyses in 2D plane strain and plane stress 
problems. The system stiffness matrix of this method is computed using the gradient smoothing 
technique over the smoothing domains associated with the edges of the element, which endows its 
superior convergence properties, computational accuracy and efficiency, spatial and temporal 
stability.  
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In this paper, the edge-based smoothed finite element (ES-FEM) is extended to be applied for large 
strain plasticity analysis, and a selective ES/NS-FEM approach is used to address the volumetric 
locking problem. Compared to standard FEM, this smoothed technique could be able to use fewer 
elements to get more precise and stable results, and better convergence property; these properties 
can decrease the computational cost significantly. 

2. Edge-based smoothed finite element method for finite strain plasticity 

2.1 Basic ES-FEM theory and formulation 

In ES-FEM, the domain discretization is still based on T3 element in standard FEM, but the 
integration required in the virtual principle is performed based on the smoothing domains associated 
with the edges instead of on the triangular element in standard FEM. In this method, the closed 

problem domain Ω  is divided into sN  smoothing domains with 1
s

sN
k k=Ω = Ω  and 0s s

i jΩ ∩Ω =  
when i j≠ , where sN  is the number of smoothing domains equal to the total number of element 
edges located in the entire problem domain. For triangular elements, the smoothing domain s

kΩ  
associated with the element edge k can be created by connecting two endpoints of the edge to 
centroids of adjacent elements as shown in Fig.1. 

 
Fig.1 Triangular elements and the smoothing domains (shaded areas) associated with edges in ES-FEM(Liu GR, 

Nguyen-Thoi T et al. 2009) 
 

In edge-based smoothing domains, the smoothed gradient of displacement field iu  can be obtained 
by 

( ) ( )
s
k

i i ku u d
Ω

∇ = ∇ Φ Ω∫ x x  (1) 

where ( )iu∇ x  is the gradient of the displacement field iu , and ∇  is defined as a smoothed gradient 
operator. s

kΩ  is the smoothing domain associated with the edge k. ( )kΦ x  is a given smoothing 
function that satisfies at least unity property 

( ) 1
s
k

k d
Ω

Φ Ω =∫ x  (2) 

In ES-FEM, a simple local constant smoothing function can be used in the calculation (Liu GR, 
Nguyen-Thoi T et al. 2009) 
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where s
kA  is the area of the smoothing domain s

kΩ , and is calculated by 

1

1
3

sd

s
k

n
s e
k i

i
A d A

=Ω

= Ω = ∑∫  (4) 

where sdn  is the number of elements around the edge k and s
kA  is the area of the thj  element around 

the edge k. Fig.1 shows that 1sdn =  when edge k is a boundary edge,  and 2sdn =  when edge k is an 
inside edge. 
Using divergence theorem on Eq. (1), it can be obtained that 

1 ( )
s
k

i is
k

u u d
A Γ

∇ = Γ∫ x n  (5) 

where n is the outward normal vector of the smoothing domain boundary s
kΓ . 

In the ES-FEM-T3, the displacement field is interpolated by the linear FEM shape function, and can 
be written in the following form 

L

i I Ii
I G

u N u
∈

= ∑  (6) 

where IN  is the shape function of node I at reference configuration, Iiu  is the displacement 
component of node I. LG  is the set of the so-called supporting nodes of the smoothing domain s

kΩ . 
Therefore, the smoothed gradient of displacement filed can be formulated by substituting Eq. (6) 
into (5) 

1 1
s s
k k

L L L

i I Ii I Ii Ii Iis s
I G I G I Gk k

u N u d N d u b u
A AΓ Γ

∈ ∈ ∈

   
∇ = Γ = Γ =   

  
∑ ∑ ∑∫ ∫n n  (7) 

where Iib  is the smoothed derivatives of shape function as 
1

s
k

Ii I is
k

b N n d
A Γ

= Γ∫  (8) 

Naturally, the smoothed strain ε  in the domain ( )kΩ  associated with edge k can now be obtained 
using Iib  

0
0
Ix

Iy I I I

Iy Ix

b
b

b b

 
 = = 
  

ε u B u  (9) 

2.2 Formulating the large deformation plasticity model  

In continuum mechanics,  the deformation gradient has the form of 
= ∇ +F u I  (10) 

where u  is the displacement field tensor, ∇  is the gradient operator, and I is the identity matrix. 
The smoothed deformation gradient associated with edge k based on the smoothed domain can be 
defined as: 

( ) ( ) ( )( ) ( )

1 1( ) ( ) ( )
k k kk k kX X d X d d

A AΩ Ω Ω
= Φ Ω = Ω = ∇ Ω+∫ ∫ ∫F F F u I  (11) 

Applying divergence theorem to Eq. (11)  in the current configuration yields 
1

s
k

s
k

d
A Γ

= ⊗ Γ + = +∫F u n I e I  (12) 
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where e  represents the smoothed gradient field of displacement, i.e. iu∇  given in Eq. (5). n is the 
outward normal vector. Also, the smoothed rate of deformation tensor could be calculated as  

1−=L FF  (13) 
The smoothed deformation rate and smoothed continuum spin can be additively decomposed as 

e p= +D D D  (14) 
e p e= + =W W W W  (15) 

The smoothed Jaumann stress rate could be obtained by 

( ) 2e etrκ µ
∇

= +T D I D  (16) 

where κ  and µ  are conventional Lame elastic constants. The 2J  associated flow theory has the 
form of 

p Fλ ∂=
∂

D
T

  (17) 

where λ  is the plasticity multiplier. The consistent tangent matrix can be solved by (Zienkiewicz 
OC and Taylor RL 2000)  

0
2 3 22 1

3
ep T T

tr tr
iH

µ λ µ µ λκ µ
µ

    ∆ ∆    = + − − −
   +     

C mm I nn
T T

 (18) 

The meaning of parameters mentioned in Eq. (18) can be found in reference  (Zienkiewicz OC and 
Taylor RL 2000). 

2.3 A smoothing-domain-based selective ES/NS-FEM model for the volume locking problem 

In large plasticity deformation problem, the elastic strain could be negligible compared to the 
plastic strain which does not change the volume of material. Therefore, incompressible deformation 
may occur in plane strain, axisymmetric, or three dimension problem, and this could probably result 
in volumetric locking phenomenon in FEM analysis. Traditional ( /u p ) mixed formulations could 
solve the problem, with increasing of computational cost. Reduced integration is the most common 
method used in commercial FEM software, however, the developer should be careful about the zero 
energy modes and it may yield inaccurate result. 
 
Based on these considerations, a combined ES/NS-FEM approach was proposed (Liu GR, Nguyen-
Thoi T et al. 2009), which was mainly used to solve the volumetric locking problem when Poisson's 
ratio approaches to 0.5. In this paper, this method will be extended to the incompressible large 
deformation plasticity analysis to overcome volumetric locking. For plasticity deformation, the 
consistent tangent matrix epC  in Eq. (18) can be decomposed into two portions - i.e. volumetric and 
deviatoric parts respectively, as 

ep ep ep
vol dev= +C C C  (19) 

where ep
volC  is related to the material volume change, and ep

devC  is corresponding to shape change. 
These two matrix can be obtained by 

0
2 3 22 1

3

ep T
vol

ep T
dev tr tr

i

K

H
µ λ µ µ λµ

µ

=

    ∆ ∆    = − − −
   +     

C mm

C I nn
T T

 (20) 

In large deformation plasticity, ep
volC  is significant in FEM simulation. However, it contributes little 

for the displacement results, because the volume change only occurs in elasticity deformation; this 
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may result in volume locking. Since node-based smoothing domain used in NS-FEM is effective in 
overcoming volumetric locking (Liu GR, Nguyen-Thoi T et al. 2009), it is proper to use NS-FEM to 
calculate the volumetric portion of the stiffness matrix, and ES-FEM to calculate the deviatoric 
portion of the stiffness matrix. This approach is so-called selective ES/NS-FEM. 

3. Numerical examples 

3.1 Plane strain beam bending 

A 0.02m×0.2m beam is fixed on the left side and subjected to a constant downward velocity on the 
bottom point of the right side as shown in Fig.2. A total displacement of 0.05m is performed in this 
problem. The material properties are given as: Young's modulus E=120MPa, Poisson's ratio ν =0.3, 
yield stress Yσ =1MPa. Isotropic hardening with the plasticity modulus iH =1MPa, and plane strain 
condition is assumed. 

 
Fig.2 The beam bending problem 

 
Four different methods are used in this case for comparison, i.e. FEM-T3, FEM-Q4, FEM-T6 and 
ES-FEM. 200 time steps are used in all solutions. Reference solutions are calculated using Abaqus 
with very fine meshes. 
 
The elastic strain energies are calculated using FEM-T3, FEM-Q4, FEM-T6 and ES-FEM 
respectively, with different mesh densities and time steps. And the comparison of strain energy 
convergence with the number of degrees of freedom (DOFs) is plotted in Fig.3. It shows that for the 
same number of DOFs, the ES-FEM can get result much closer to the reference solution than FEM-
T3, i.e. ES-FEM-T3 is much more accurate than FEM-T3. Furthermore, with the increasing of 
number of DOFs, ES-FEM converges to the reference result much faster than FEM-T3. The FEM-
T3 is hardly to converge because it is very stiff. Moreover, ES-FEM-T3 can get similar accurate 
result compared with FEM using 4-node quadrilateral element and 6-node quadratic triangular 
element; this is a big advantage for the ES-FEM-T3 technique. 

 
Fig.3 Convergence of the elastic strain energy versus the number of degrees of freedom 

 
Fig.4 compares the computational cost and efficiency of the four different methods for different 
mesh densities. The CPU time shown in the figure represents the average computational cost for 
one iteration; this include the time of assembling stiffness matrix and solving linear equations, and 
it can be calculated by 
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total

ite

tt
N

=  (21) 

where totalt  is the total CPU time and iteN  is the number of iterations. Fig.4(a) shows that with the 
same mesh density, the computational cost of ES-FEM is larger than FEM-T3 and similar as FEM-
Q4 and FEM-T6. However, when the computational efficiency (computation time for the same 
accuracy) is considered, ES-FEM is much more effective than FEM-T3, and could get similar 
computational efficiency compared to FEM-Q4 and FEM-T6. 

 
(a)                                                                                       (b) 

Fig.4 Comparison of the computational cost and efficiency of three different methods 
(a) Computational cost; (b) Computational efficiency 

The deformation configurations with effective plastic strain contours for ES-FEM and FEM-Q4 
(Abaqus) are plotted in Fig.5, and similar contour profiles are obtained. Fig.5 illustrates that ES-
FEM is a valid and effective method in large deformation plasticity analysis. 

 
(a)                                                            (b) 

Fig.5 Effecitve plastic strain contour using 2222 DOFs (a) FEM-Q4 (Abaqus) and (b) ES-FEM 

3.2 Downward forging of a billet 

A billet is subjected to a constant downward velocity on the top surface as shown in Fig.6(a). The 
material properties are given as: Young's modulus E=200GPa, Poisson's ratio ν =0.49, yield stress 

Yσ =500MPa. Isotropic hardening with the plasticity modulus iH =1000MPa and plane strain 
condition is assumed. 

 
(a)                                                        (b) 

Fig.6 (a) Compression forging of a billet (b) A quarter symmetrical model for the forging of billet 
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A quarter symmetrical model and boundary conditions imposed are shown in Fig.6(b). The dies 
were modeled as being rigid, and no sliding is assumed between the billet and die during contact. 
Because the material is nearly incompressible ( 0.49v = ) and the deformation is very large, the 
volumetric locking must be considered. Hence the selective ES/NS-FEM technique is used in this 
simulation. The problem domain is discretized by ES-FEM-T3, ES/NS-FEM-T3, Q4 and T6 
elements, as illustrated in Tab.1. 

Tab. 1 Mesh discretization schemes for different methods 
 Number of elements Number of nodes 

ES-FEM-T3/ES/NS-FEM-T3 332 192 
Q4 150 176 
T6 332 715 

The solution of FEM-Q4 is given by Abaqus using β  method, and FEM-T6 is solved using 
modified formulation provided in Abaqus (Abaqus 2009). At the end of this simulation, ES/NS-
FEM and FEM-Q4 are capable to achieve 50% compression, i.e. the displacement of lower edge 

u∆ =0.0015m. However, FEM-T6 can only achieve 42% compression, i.e. the displacement of 
lower edge u∆ =0.00126m before the element distorted. ES-FEM-T3 cannot get an accurate result 
because of volumetric locking. The contours of effective plastic strain for different schemes are 
plotted in Fig.7.  
 

 
              (a)                                     (b) 
Fig.7 Solution of forging of billet: deformation configurations u∆ =1.5mm (50% Compression) solved by (a) Selective 

ES/NS-FEM-T3, (b) FEM-Q4 
 

Fig.8 plotted the displacement of point C in x direction by different schemes. It illustrates that the 
result calculated by ES/NS-FEM-T3 using linear 3-node triangular element agrees very well with 
FEM-Q4 and FEM-T6, and could bear larger element distortion than FEM-T6. ES-FEM-T3 cannot 
get a correct result because of volumetric locking, and no locking problem is observed in ES/NS-
FEM-T3 approach.  

 
Fig.8 Displacement solutions of forging of billet at point C 
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4. Conclusion 

In order to utilize 3-node linear triangular element for analyzing large strain plasticity problem, an 
edge-based gradient smoothing technique has been formulated in large deformation plasticity theory. 
A selective ES/NS-FEM method is also adopted to solve the volumetric locking problem. In this 
method, the deviatoric portion of tangent modulus is calculated by edge-based smoothed gradient 
method, and the volumetric portion is solved by node-based smoothed gradient method. Two 
numerical examples are simulated to show the validity and advantages of ES-FEM compared to 
standard FEM method. Conclusions could be drawn as follows: 
 
(1) With the same displacement control, the ES-FEM-T3 can get lower strain energy than the 

standard FEM with T3 element. This indicates that ES-FEM-T3 is softer than FEM-T3. This 
property can perfectly alleviate the “over-stiff behavior” of the linear triangular element, and 
greatly improve the performance of linear triangular element.  

(2) The edge-based smoothing gradient technique can get much more accurate results and faster 
convergence rate than standard FEM with T3 element. Furthermore, the convergence rate and 
computing efficiency of ES-FEM using just 3-node element is similar as the standard FEM 
using 4-node quadrilateral element and 6-node quadratic triangular element. 

(3) Even though only linear triangular element is used, ES/NS-FEM possesses strong capability of 
handling element distortion. It can sustain larger plastic distortion than FEM-T6 in large strain 
plasticity analysis. 

(4) No volumetric locking is observed when ES/NS-FEM technique is adopted.  
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