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The theoretical and computational aspects of interval methodology based on Chebyshev 
polynomials for modeling complex nonlinear multi-body dynamic systems in the presence of 
parametric and external excitation uncertainties is formulated, implemented, and validated. Both the 
parameters uncertainties and external excitation uncertainties are modeled by uncertain-but-
bounded interval variables, where the bounds on the magnitude of uncertain parameters or external 
force are only required, not necessarily knowing the probabilistic distribution densities. The 
Chebyshev inclusion function which employs the truncated Chevbyshev series expansion to 
approximate the original nonlinear calculates sharper range than the traditional Taylor inclusion 
function. The coefficients of the Chebyshev polynomials are calculated through the Mehler 
numerical integral method. The multi-body systems dynamics are governed by differential algebraic 
equations (DAEs) which are transformed to nonlinear equations with interval parameters at each 
integral step by HHT-I3 methods, and then the proposed method for nonlinear systems with interval 
parameters can be employed to find the interval region of the system responses. The numerical 
example results show that the novel methodology can reduce the overestimation largely and is 
computationally faster than the scanning method.  
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Introduction 

Modern multibody systems containing such as mechanisms, robotics, vehicles, and machines etc. 
are often very complex and consist of many components interconnected by mechanical joints and 
force elements. The governing equations of such systems are often governed by index-3 differential 
algebraic equations (DAEs). Although mathematical modeling tools for multibody dynamics 
simulation have experienced a tremendous growth, most researches were based on the assumption 
that all parameters of multibody systems are deterministic. However, the realistic engineering 
multibody systems often operate under some degree of uncertainty which may be resulted from 
variability in their geometric or material parameters, or caused by the assembly process and 
manufacturing tolerances and/or wear, ageing and so on. Hence, the multibody dynamics models 
must account for these uncertainties for achieving the realistic predictions of the system responses. 

Interval arithmetic has appeared several decades, but interval theory was not mainly concentrated 
until the appearance of Moore's work (Revol, Makino et al. 2005). Interval arithmetic can obtain the 
system response bounds quickly, because it is not a type of optimization algorithm which needs a 
large mount of iterations. However, interval arithmetic has its own drawback that is the calculation 
results may be overestimated too much caused by the wrapping effect. How to reduce the 
overestimation is the key for interval arithmetic. Many interval methods have been proposed to 
solve the static problems (Zingales and Elishakoff 2000; Chen, Lian et al. 2002; Gao 2006; 
Muhanna, Zhang et al. 2007; Wang, Elishakoff et al. 2009; Gao, Song et al. 2010). However, the 
interval methods for solving the dynamics problems which are expressed as differential equations 
including ODEs and DAEs are presented not much. The numerical methods for solving differential 



APCOM & ISCM  
11-14th December, 2013, Singapore 

equations contain much iteration which aggravates the overestimation, so besides using the interval 
set theory, many other particular algorithms are introduced to reduce the overestimation. Interval 
Taylor series method (Nedialkov, Jackson et al. 1999; Alefeld and Mayer 2000; Jackson and 
Nedialkov 2002) and Taylor model method (Berz and Makino 1999) are the two important 
methods. The Taylor model uses higher order Taylor series to approximate the system responses 
and adds a remainder interval to guarantee the interval ranges contain all the possible results, which 
reduces the wrapping effect induced by the dependency of interval variables. Lin's VSPODE (Lin 
and Stadtherr 2007) combined the two methods to solve the ODEs with interval parameters, which 
made the interval results sharper. The mechanical dynamics problems are generally governed by 
DAEs, especially by the index-3 DAEs. The numerical solution of DAEs has a comparatively short 
history related to ODEs, still, numerically solving DAEs poses fundamental difficulties not 
encountered when solving ODEs (Negrut, Jay et al. 2009).  

To reduce the overestimation of interval inclusion function, the Chebyshev inclusion function using 
the truncated Chebyshev series to calculate the bounds of function with interval parameters is 
proposed. The Chebyshev inclusion function can reduce the overestimation effectively, because it 
can be expressed as cosine functions which make the interval range sharper for non-monotonic 
functions. Utilizing the Chebyshev inclusion function on DAEs with interval parameters, the 
overestimation can be controlled effectively. For Mehler integral is an interpolation quadrature 
formula, the solutions at each interpolation point are needed, and the traditional HHT-I3 numerical 
method is used to produce the solutions at each interpolation point. At last, the interval arithmetic 
can be employed to calculate the bounds of solutions of DAEs based on the obtained Chebyshev 
inclusion function.  

Modeling and Solving the Multibody Dynamics System 

The constrained equations of the dynamics of multibody systems can be expressed as (Negrut, Jay 
et al. 2009)  
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where nRq are the generalized coordinates, nRv are the generalized velocities, mRλ are the 
Langrage multipliers, and : cR Ru represent time dependent external dynamics, e.g. control 
variables. The matrix M(q) is the generalized mass matrix,   t tQ ,q, v,λ,u  represents the vector of 
generalized applied forces, and  tΦ q, is the set of m holonomic constraints. The notation in bold 
denotes vector, while the notation in italic denotes scalar.  

The classical numerical techniques for DAEs contain two classes: state-space methods and direct 
methods (Bauchau and Laulusa 2008). The major intrinsic drawback associated with state-space 
methods remains the expensive DAE to ODE reduction process that is further exacerbated in the 
context of implicit integration (Negrut, Jay et al. 2009). Direct methods discretize the constrained 
equations and transform the DAEs to algebraic equations at each integral step. Many direct methods 
have been proposed to solve the index-3 DAEs, such as the Newmark method (Newmark 1959), 
HHT-I3 (Negrut, Rampalli et al. 2007), and generalized α-method (Chung and Hulbert 1993) and so 
on. In this paper, we use the HHT-I3 method which would be described as follows. 

Discretize the Eq. (1) with respect to time leads to the following equations (Negrut, Jay et al. 2009) 

  

 

 

      

 

2

1 1

1 1

1 1

1 12

1 2 2
2

1-

1

1 1
1

n n n n n

n n n n

n n n

n n

h
h

h

t
h

 

 


 



 

 

 

 

  

  

 
T T
q q

q = q + q + a + a

q = q + a + a

M q a - Φ λ - Q - Φ λ - Q = 0

Φ q , = 0



 
,    (2)  



APCOM & ISCM  
11-14th December, 2013, Singapore 

where h is the integration step-size, an+1 is the approximation of   1nt h q , and the initial value 

a0 can be set as 0 0a = q , subscript n denotes the nth integral step, and subscript q denotes the 

derivative of q. ,  , and  are the parameters of HHT-I3 method that confirm the conditions as 
follow: 

   21 3,0 , 1 4, 1 2          .    (3) 

The smaller value of leads larger numerical dissipation for HHT-I3 method, but it makes the 
solution more stability. The last two equations of Eq. (2) are the nonlinear system of 

 T1 1 1  n n n  w a λ , so the Newton method can be used to solve the system. The Newton method 

does not consider the uncertain parameters in the equations, and the method treating for 
uncertainties will be presented in following sections. 

Interval Arithmetic 
Let us define a real interval [x] is a connected nonempty subset of real set R . It can be expressed as 

 
_ _

, :x x x x R x x x
 

            
,         (4) 

where x is the lower bound of interval [x] which also can be noted as inf([x]); x  is the upper bound 
of interval [x] which also can be noted as sup([x]). The set of all intervals over R is denoted by IR 
where 

_ _ _

, : , :IR x x x x R x x
  

        
.           (5) 

Interval arithmetic operations are defined on the real set R such that the interval result closes all 
possible real result. Given the two real interval [x]and [y],  
                 : ,  for , , ,x y x y x x y y          .   (6) 

Consider a function f from Rn to Rm. The interval function [f] from IRn to IRm is an inclusion 
function for f if 

         ,nx IR f x f x   .     (7) 

The direct calculation of an enclosure for a function using interval arithmetic will often lead to large 
overestimation. To make the result sharper, the higher order Taylor series expansion can be used. If 
the function f is n+1 times differentiable on the interval [x], the nth-order Taylor inclusion function 
(Jaulin 2001) can be obtained as follows: 
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,   (8) 

where xc denotes the midpoint of [x] 

        1

2cx mid x x x   .        (9) 

And  x  is a symmetry interval of [x], which is expressed by 

       ,
2 2

x x x x
x

      
.            (10) 

In the above, the Eq. (8) calculates the rigorous enclosure for the function f(x). The last term in the 
right hand side of Eq. (8) is usually neglected to obtain the approximate enclosure of f(x) in 
engineering. Some specific interval function can be calculated through some special algorithms, e.g. 
the trigonometric function (Jaulin 2001) and so on.. 
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Chebyshev Method for Multibody Dynamics System with Interval Parameters  

Chebyshev inclusion function 
If the function f(x) is contained in C[a, b], which means f(x) is continuous on [a, b], then it can be 
approximated as truncated Chebyshev series with degree n (Li, Wang et al. 2003), shown as follow 

     0
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   ,       (11) 

where fi are the constant coefficients, and Ci(x) denotes the Chebyshev polynomial. The Chebyshev 
polynomial for  1,1x  of degree n is denoted by Cn and is defined by (Rivlin 1981)  

              cosnC x n ,                      (12) 

where    arccos 0,x   , n denotes the nonnegative integer. The Chebyshev polynomial on [a, b] 

of degree n is also defined by Eq. (12), but here  2
arccos

x b a

b a


  
   

. For multi-dimension problem, 

the polynomials are the tensor product of each one-dimension polynomial. For example, the k 
dimensions Chebyshev polynomials of  1,1ix   , i=1,2,…, k can be expressed as 

      
1 2, ,..., 1 1 1,..., cos ...cos

kn n n k k kC x x n n  ,     (13) 

where  arccosi ix  . The corresponding multi-dimension function f(x) can be approximated as  
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where p denotes the total number of zero(s) to be occurred in the subscripts 1,..., ki i ,  
1 ,..., ki iC x  is the 

k-dimensional Chebyshev polynomials given in Eq. (13), and 
1,..., ki if  denotes the vector including the 

coefficients of Chebyshev polynomials which can be calculated by Eq. (15) 
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where k denotes the number of dimension, and subscript i1,…, ik =0, 1,…, n. The numerical integral 
methods should be used to calculate the Eq. (15), and the Mehler integral method is suitable. The 
Mehler integral is a type of interpolation integral which can be expressed as 
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where m denotes the number of interpolation points, θj denotes the interpolation points 
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Similar to Taylor inclusion function, we define the Chebyshev inclusion function of f(x) which can 
be expressed as 
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where    0,  . Eq. (18) can be calculated through the algorithm of interval trigonometric 

function shown in section 3. 

Chebyshev method for solving multibody systems containing interval parameters 
From section 2, we know that the numerical method for solving the multibody dynamics system 
transform the DAEs to nonlinear equations at each integral step. When consider the uncertain 
parameters and uncertain external excitation are contained in the multibody system, such as the 
length tolerance of components inducing the mass and center of mass uncertain, the density 
uncertainty leading the mass and the moment of inertia uncertain, and the fluctuated driving force, 
the DAEs can be transformed to nonlinear equations containing uncertain parameters.  
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Since the DAEs are transformed to nonlinear equations at each iteration step, the nonlinear 
equations with interval parameters will be researched. Consider the q dimensions function 
group

1 2, ,..., qf f f


   F , where : , 1, 2,...,q
if x R R i q   X . If the uncertain parameters which are 

expressed as interval parameters  kξ a,b exist in the nonlinear system, the nonlinear system can be 

described as 

 ,F X ξ = 0 .          (19) 

The solution set of Eq. (19) is a function with respect to uncertain parameters ξ , and its interval 
solution is     X ξ  

      1 ,    Y=0
X ξ = F Y ξ X ξ .         (20) 

Considering the Chebyshev inclusion function Eq. (19), the interval solution     X ξ  can be 

calculated as 
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where  0,
kθ , and the coefficients vector 

1,..., kj jX can be obtained through Eq. (16) 
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where l denotes the interpolation points expressed by Eq. (17), and  
1
,...,

kl l X  denotes the 

solution of nonlinear system shown in Eq. (19) when the values of uncertain parameters are set as 

1

T
cos ,..., cos

kl l    ξ . The detail algorithm for solving multibody systems with uncertain parameters 

can be described as Algorithm 1. 
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From the calculation flow, we find that the algorithm solving the uncertain problem is similar to a 
type of sampling method, but its pre-processing and post-processing are particular. Thus, the 
proposed method can be used in black box problems even, but the accuracy and efficiency should 
be researched further. 

Numerical Application  
In this section, the numerical example which is slider crank mechanism containing interval 
parameters is presented. In the slider crank mechanism, the length of crank is firstly considered as 
an interval parameter, we hope to obtain the range of slider displacement in the whole calculation 
period. The schematic of slider crank is shown in Fig. 1, and the parameters are shown in Table 1. 
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2x
3x

3y

2y
1y


 

Figure. 1 The schematic of slider crank 

Table 1. The parameters of slider crank 
parameters l1(m) l2(m) m1(kg) m2(kg) m3(kg) c(N/(m/s)) k(N/m)  (Nm)

value 0.15 0.56 0.37 0.77 0.45 1 5 -0.5
 
As shown in Fig. 1, point A, B, and C is the gravity center of crank, connecting rod, and slider 
respectively. 1 and 2 denotes the angle between the global coordinate and the local coordinate of 

crank and connecting rod respectively. The slider is connected with a spring damper, and the spring 
force is zero when the angle 1 and 2 equal to zero. l1 and l2 denotes the length of crank and 

connecting rod; m1, m2, and m3 denotes the mass of crank, connecting rod, and slider respectively; c 
is the damp coefficient of spring damper, k is the stiffness of spring damper, and  denotes the 
external torque applied on the crank. Choose the seven generalized coordinates which are 

 1 1 1 2 2 2 3, , , , , ,
T

x y x y x q , where the subscript 1, 2, and 3 denotes the crank, connecting rod, and 

slider, respectively. Suppose the length of crank l1 containing uncertainty with 1% of its nominal 
value, noting it as 

   1 1 1 1
ˆ 1 0.01 1,1l l     ， .                     (23) 

The system is solved for a period of 2s by using the Chebyshev method with 5th-order polynomials 
and the second-order Taylor method, respectively. To ensure the precise ranges of results, the 
scanning method (Buras, Jamin et al. 1996) is employed with symmetrical 30 sampling points. The 
results are shown in Fig. 2.  

 
Figure. 2 The displacement of piston with uncertain crank length 
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The results obtained by Chebyshev method enclose the range of scanning method tightly in the 
initial period, compared with the Taylor inclusion function method. 

 
Figure. 3 The displacement of piston with uncertain crank length and torque 

Secondly, we also consider the external torque   under interval uncertainty with 1% of its nominal 
value, and the uncertain external torque is then expressed as 
      2 2ˆ 1 0.01 [ 1,1]      ，     (24) 

The initial conditions keep unchanged. Solve the system for a period of 2s using the Chebyshev 
method with the 5th-order polynomials and the second-order Taylor method. The results are shown 
as Fig. 3. For the computational time, the proposed Chebyshev method requires 422s, while the 
Taylor method and scanning method needs 1392s and 10584s, respectively. 

Conclusions 
A new interval numerical method using Chebyshev series to solve the multibody dynamics system 
with uncertainties is presented. Interval method is mainly used in the cases that only the bounds of 
uncertain parameters are known. To weaken the drawback of interval method, overestimated too 
much, the Chebyshev inclusion function which employs the truncated Chebyshev series to 
approximate the original function is proposed. The Chebyshev polynomials approximation theory is 
also used in solving the nonlinear system with interval parameters. To solve the multibody system 
dynamics problems containing uncertain parameters, the classical HHT-I3 method is used to 
transforms the DAEs to nonlinear systems at each integral step, so the proposed algorithm for 
solving nonlinear system with interval parameters can be ultilized. The numerical example of slider 
crank mechanism is presented, where the length of crank and torque forced on crank are considered 
as interval parameters. The numerical results show that the results of Chebshev method enclose the 
results of scanning method tighter than the Taylor method, also the Chebyshev method is higher 
efficient than both scanning method and Taylor method. The proposed method is similar to the 
sampling method which may even settle the black box problems.  
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