
Direct Numeric Simulation of Sheared Convective Boundary Layer
Entrainment with GPUs

*Nicholas J. Stewart1 , David W. Holmes1, Wenxian Lin1, Steven W. Armfield2
and Michael P. Kirkpatrick2

1School of Engineering and Physical Sciences, James Cook University, QLD 4811, Australia
2School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,

NSW 2006, Australia
*Corresponding author: nicholas.stewart@my.jcu.edu.au

Abstract
Sheared convective boundary layers (SCBL) are a frequently observed boundary layer
in nature and industry. This paper presents work conducted to validate a numerical fluid
model of sheared convective boundary layers implemented in Nvidia's CUDA program-
ming language for graphical processing units. The code is based on finite difference im-
plementation of the SIMPLE algorithm using the Boussinesq approximation to couple
the energy equation through the buoyancy term.Work presented shows validation of the
model on simpler test cases that are more thoroughly understood, and the model shows
agreement with physical phenomena.

Keywords: high performance computing, GPGPU, CUDA, boundary layer

Introduction
Sheared convective boundary layers (SCBL) are turbulent boundary layers that are
prevalent in environmental systems such as the Earth's atmosphere and engineered sys-
tems including air-conditioning and natural ventilation of building spaces. As the name
suggests, a SCBL is a boundary layer that is driven by both shear and convective motion
of the fluid. Currently the flow behaviours of SCBLs are not well understood and param-
eterising entrainment and other flow characteristics is unresolved. Numerical modelling
and laboratory scale experiments are required to give a better understanding of SCBLs
[1]. Both techniques have been employed previously to develop understanding of a sim-
ilar problem, convective boundary layers. The work presented in this paper will focus
on validating the numerical model against simplified cases including a lid driven cavity,
a Blasius flat plate and a stratified shear layer.

Due to the turbulent nature of SCBLs, high resolution numerical meshes are required to
resolve the smallest scales possible.This requires significant computational power that
is typically derived from either distributed (cluster) computing or through multi-core
processing. In recent years, GPUs, or more commonly known as graphics cards, have
been developed to perform general purpose processing tasks and are now similar in ca-
pabilities to CPUs, but offer significantly higher performance due to GPU's massively
parallel architecture. To unlock this performance, heavy modification of traditional al-
gorithms is usually required, leading to the field of programming known as GPGPU, or
General Purpose computing on GPUs.

This paper will validate the numerical model developed on Nvidia's GPGPU program-
ming language, CUDA, using several simplified cases of SCBLs. The numerical model



is based on the semi-implicit SIMPLE [2] algorithm and solves the incompressible
Navier-Stokes equations while using a buoyancy term to couple the energy equation
through the Boussinesq approximation.

Numerical Model
The Navier-Stokes and energy equations are needed to be solved to model a SCBL
system. The model was simplified by assuming that the system is incompressible and
the Boussinesq approximation is valid for the buoyancy force. The incompressible form
of the governing equations can be written as follows

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −1

ρ
∇P + ν∇2u− ρ

ρ0
g, (2)

∂T

∂t
+ u · ∇T = σ∇2T, (3)

where u is the velocity vector, t is time, ρ is density of fluid at temperature T , ρ0 is
the density of fluid at a reference temperature T0, P is pressure, g is acceleration due
to gravity, and ν and σ are the kinematic viscosity and thermal diffusivity of fluid,
respectively. The Navier-Stokes equation (2) is coupled with the energy equation (3)
through the buoyancy term ρ

ρ0
g.

The SIMPLE algorithm is used to solve the governing equations by using a cyclic system
of guess and correct steps. The velocity components are first determined by solving the
momentum equations using an approximated pressure field, coupled with the energy
equation, then the pressure and velocity fields are corrected to satisfy continuity. This
process continues until the system converges. The accuracy of themodel is largely based
on how the individual terms are discretised. Themodel was implemented with first order
upwind advection terms and second order central diffusion terms.

GPGPU Implementation
The numerical algorithmswere implemented inNvidia's CUDAprogramming language.
The development process started with modifying an existing code and implementing it
in a naive way on GPU (unrolling loop structures into GPU kernels) and followed with
optimizing the algorithm for GPU. The code was benchmarked during all stages of
development to determine how much performance is gained by which stages of imple-
mentation. This is helpful to gauge the viability of projects such as OpenACC, which
provide compiler directives for automatic generation of GPU kernels, when applied to
non-trivial parallel problems.

The performance of the algorithmwas submitted as another conference paper [10], how-
ever a brief of those results are shown here which demonstrate that the implementation
on GPU significantly improved the performance, as shown in Fig. 1, which shows the
solution time of different processing units as the model node count is increase. Both the
CPU and GPU solution time increases linearly as node number increases, but the GPU
model performs consistently much better than the CPU model. Fig. 2 shows the speed



up obtained with the semi-implicit algorithm (as a multiplier of the CPU performance),
demonstrating it steadily growing as the model size increases. The performance differ-
ence between the two GPUs is largely explained by the different clock speed on the
units.

1

10

100

1000

10000

10000 100000 1000000 10000000

So
lu

ti
on

 T
im

e 
(1

00
0 

s)
 

Nodes 

CPU

GTX560

C2070

Fig. 1: Semi-implicit model performance as node number is increased.

0

10

20

30

40

50

60

70

24000 100000 175000 350000 854000 1554000

Sp
ee

d 
U

p 
M

ul
ti

pl
ie

r 

Nodes 

CPU

GTX560

C2070

Fig. 2: Semi-implicit model performance improving when implemented on GPU.

Validation
Simplified test cases were used to ensure the correctness of the numerical model. Three
main cases were investigated: a lid driven cavity flow, uniform flow over a flat plate, and
a stratified shear layer. These cases were compared with literature to ensure consistent
results.

Lid Driven Cavity.

The lid driven cavity is a common validation case with simple geometry and boundary
conditions. The case is set up by having a square field of fluid, with non-slip conditions
on the sides and floor, and a constant velocity boundary on the lid of the cavity as shown
in Fig. 3.



Fig. 3: Numerical setup of lid driven cavity flow.

The work performed by Ghia, Ghis and Shin [7] is frequently used as a benchmark, as it
provides both images to compare, and tables of values. Fig. 4 shows an agreement of ve-
locity profiles between the developed model and results of previous work. Fig. 5 shows
the streamlines of the lid driven cavity, similar to those shown in other work.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y
 P

os
iti

on
 (

m
)

Dimensionless x velocity (u/U)

 

 

Ghia, Ghis, Shin (1982) Results
Results from Model Developed

Fig. 4: Horizontal velocity profile over the midline of lid driven cavity with a
Reynolds number of 1000

Flat Plate.

In the flat plate example a uniform velocity field is applied over a non-slip flat plate, on
which a boundary layer develops. Fig. 6 shows a uniform flow field being applied to a
flat plate, with the dashed line showing the boundary layer thickness (defined as where
the velocity is less than 99% of the free field velocity).

The Blasius solution [8] gives the expected velocity profile and thickness of the bound-
ary layer developed over a flat plate. Fig. 7 shows the profile determined by the CUDA
algorithm matches closely with the Blasius solution. The main difference between the
solutions is the bump occurring at the edge of the boundary layer, caused by the uniform
inlet being applied at the start of the non-slip plate.

Stratified Shear Layer.



Fig. 5: Streamlines of lid driven cavity with a Reynolds number of 1000

Fig. 6: The flat plate example showing the development of the boundary layer and
the resultant velocity profile.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized velocity profile (u/U)

D
is

ta
nc

e 
fr

om
 s

ur
fa

ce
 (

m
)

 

 

Blasius Solution

Numerical Model Solution

Fig. 7: Comparison of velocity profile calculated by the Blasius solution and the
developed model.



In the stratified shear layer case two statically stable layers of fluid are moving at dif-
ferent velocities causing a shearing effect at the interface. A model can be set up as
shown in Fig. 8 to investigate the effects of shear and buoyancy forces on the system.
Characteristics of the system are largely determined by the Reynolds number and the
Richardson number. The Reynolds number is given by

Re =
∆Ud

ν
, (4)

where∆U is the velocity difference between the two layers, and d is the interface thick-
ness. The Richardson number is given by

Rig =
N2

(∂u
∂z
)2
, (5)

whereN2 = −g
ρ1

∂ρ0
∂z

is the buoyancy frequency, ∂u
∂z

is the rate of change of velocity in the
vertical direction, g is gravity, ρ1 is the upper layer density and ρ0 is the reference den-
sity. The Richardson number gives the ratio of buoyancy forces to shear forces.

Fig. 8: The numerical model setup for stratified shear flow.
When the value for Richardson number is below 0.25, shear forces overwhelm the buoy-
ancy forces to the extent that Kelvin-Helmholtz instabilities begin to occur [9]. The
code developed reliably shows the development of K-H instabilities at low values of
Richardson number as shown in figure 9, where Ri = 0.2 and Re = 5000. In this case
the density gradient is generated by a change in temperature of 0.5°C.

Fig. 9: Kelvin-Helmholtz instabilities in a stratified shear layer at Ri = 0.2 and
Re = 5000.

Conclusion
The developed code was tested against several simplified cases of SCBLs, i.e. a lid
driven cavity, a flat plate boundary layer and a stratified shear layer. In all cases it



was shown the numerical model agrees with previous works to within reasonable ex-
pectations. This work is to be extended to investigating the case of sheared convective
boundary layers.

Acknowledgements
This work has been supported by an Australian Research Council Discovery Project
Grant DP110102343.

References

[1] J.R. Conzemius, E. Fedorovich, Dynamics of shear convective boundary layer en-
trainment, J. Atmospheric Sci., 66, (2006) 1151-1178.

[2] L.S. Caretto, A.D. Gosman, S.V. Patankar, Two calculation procedures for steady,
three-dimensional flows with recirculation, Proc. of the 3rd Int. Conf. on Numerical
Methods in Fluid Mechanics, Lecture Notes in Physics, Vol. 19, 1972, Pages 60-68.

[3] R.W.MacCormack: The effect of viscosity in hypervelocity impact cratering, AIAA
Paper, 1969, Pages 69-354.

[4] Nvidia: CUDA Programming Guide on http://www.nvidia.com/cuda/.

[5] R.S. Bernard, AMacCormack scheme for incompressible flow, Computers &Math-
ematics with Applications, 24, (Issues 5–6), (1992) 151-168.

[6] R.H. Pletcher, J.C. Tannehill, D.A. Anderson: Computational Fluid Mechanics and
Heat Transfer, third ed., CRC Press, Boca Raton, 2012.

[7] U. Ghia, K.N. Ghis, C.T. Shin: High-Re Solutions for Incompressible Flow Using
the Navier-Stokes Equations and a Multigrid Method, J. Computational Physics, 48,
(1982) 387-411.

[8] F.M. White: Fluid Mechanics, fifth ed., McGraw-Hill, 2003.

[9] E.J. String, H.J.S Fernando: Entrainment and mixing in stratified shear flows, J.
Fluid Mechanics, 428, (2001) 349-386

[10] N.J. Stewart, D.W. Holmes, W. Lin, et al: Comparison of Semi-Implicit and Ex-
plicit Finite Difference Algorithms on Highly Parallel Processing Architectures, sub-
mitted to Australasian Conference on Computational Mechanics 2013, Sydney, AU


	References

