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Abstract 

This paper presents a long-term and buckling analysis of concrete-filled steel tubular (CFST) 

columns under sustained axial compression by accounting for the uncertainties of creep and 

shrinkage of the concrete core. The intervals of the final shrinkage strain and final creep coefficient 

of concrete core are derived from test results. An interval analytical model based on the 

algebraically tractable age-adjusted effective modulus method is proposed for the uncertain long-

term and buckling analysis of CFST columns. An interval finite element model was developed in 

this paper for long-term behavior and buckling analysis. Perturbation method was employed to 

determine the two bounds of the solution. The results of the proposed analytical model and finite 

element model were compared with experimental results and analyzed. 

Keywords: creep, shrinkage, interval analysis, interval finite element analysis, perturbation method  

1. Introduction 

Concrete-filled steel tubular (CFST) columns have been used in construction since the mid-1980s 

(Schneider, 1998) and become increasingly popular in both high-rise buildings and bridges (Shams 

and Saadeghvaziri, 1997). A CFST section consists of a steel tube and a concrete core (Fig. 1). 

Creep and shrinkage of the concrete core occur with an increase of time, which influence the long-

term behavior of CFST columns significantly. It is of great importance to correctly predict effects of 

creep and shrinkage of the concrete core on the long-term behavior of CFST columns. 

 

 Steel section 

 

 

 

  

 

Figure 1. Cross-sections of CFST columns 

 

Experimental and analytical studies have been performed by pioneers over the past three decades. 

Terrey et al. (1994) conducted similar experiments on circular CFST columns axially loaded at an 

earlier age of the concrete core. The first test on square CFST columns was carried out by Morino et 

al. (1996)and six concentrically loaded columns, two eccentrically loaded columns and one flexural 

member were tested. Experiments for similar cross-sections were implemented by Uy (2001) 
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applying axial loading to the CFST columns at 14 and 28 days of age of the concrete core 

respectively. Square CFST columns subjected to higher sustained loads were investigated by Han et 

al. (2004). Terry et al. (1994), Uy (2001) and Han et al. (2001) predicted the concrete time-

dependent behavior by using the age-adjusted effective modulus (AAEM) method proposed by 

ACI-209. Cheng et al. (2005) introduced a three-dimensional nonlinear laminated element into the 

long-term modeling and assumed the creep behavior to be described by the Kelvin model. All of 

these experimental and analytical investigations treated the creep and shrinkage behaviors of the 

concrete core as deterministic phenomena.  

 

However, it is noted that the creep coefficient obtained from tests vary significantly from one 

experiment to another. Very different predictions of the time-dependent behavior of CFST columns 

have been reported in different studies. This shows that the uncertainties of creep and shrinkage of 

the concrete core do exist. To predict the long-term behavior of CFST columns reasonably, these 

uncertainties have to be considered. Uncertain analysis of engineering structures has been 

developed in the last two decades and probabilistic methods are usually used if sufficient 

probabilistic information is available to validate the distributions or probability density functions of 

random variables. Other non-probabilistic approaches such as interval arithmetic and fuzzy sets 

theory are excellent alternatives when the statistical data of variables are not enough. For the long-

term analysis of CFST columns considering the creep and shrinkage of the concrete core, 

probabilistic methods require probabilistic distributions of the final creep coefficient and final 

shrinkage strain to be determined first. Unfortunately, the available test data for creep and shrinkage 

of the concrete core of CFST sections are quite limited. Hence, it is impossible to derive correct 

probabilistic distributions of the final creep coefficient and final shrinkage strain.  

 

In this paper, intervals are adopted to represent the uncertainties. In interval model, only the lower 

and upper bounds are required, which will be determined from the currently available experiment 

results for the final creep coefficient and final shrinkage strain. The age-adjusted effective modulus 

method (AEMM) (Bažant, 1972) is used to describe the creep of the concrete core and a virtual 

work method is used to establish the differential equation for the long-term-analysis of CFST 

columns that are subjected to a sustained axial uniform compression. Interval analyses are then 

implemented to predict the uncertain long-term behavior of CFST columns and buckling loads 

caused by the variations of the creep and shrinkage of the concrete core. Finally, an extensive 

parametric study is carried out to evaluate the influence of time, load level, steel ratio for CFST 

columns. 

 

2. Interval analytical analysis 

2.1 Interval linear elastic analysis of long-term behavior of CFST column 

To predict the long-term performance, interval constitutive model considering creep and shrinkage 

of the CFST column needs to be established. The basic assumptions adopted for the interval long-

term linear elastic analysis of CFST columns in this paper are: (1) deformations of the CFST 

columns are elastic and satisfy the Euler–Bernoulli hypothesis; and (2) the steel tube is fully bonded 

with the concrete core. Then, the linear strain of the CFST column can be expressed as 

                                                                             u                                                                        (1) 

where u is the vertical displacement along the longitudinal direction of the CFST column. Based on 

the age-adjusted effective modulus method (AEMM), the stress in concrete can be expressed as 

                                                    ( ) (c ec sh ecE E     u )sh                                                 (2) 

where Eec is the age-adjusted effective modulus of concrete, sh is the shrinkage strain of concrete 

and can be given by AS3600 (2001) 
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where t is the loading time, 
shfinal is the final shrinkage strain of concrete when t →∞. Eec can be 

calculated by 
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where 0  is the age at loading, 0( , )t  is the aging coefficient and 0( , )t   is the creep coefficient 

that can be expressed as 
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where 
final  is the final creep coefficient when t →∞. The aging coefficient 0( , )t   can be 

expressed as (Gilbert, 1988) 
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As the concrete core is assumed to be fully bonded with the steel tube, the deformations of the steel 

and concrete must be compatible with each other. Consequently, their mechanical membrane strains 

are equal to each other and the mechanical strains at the interface between the steel tube and 

concrete core are the same. Therefore, the stress s  in the steel tube can be written as 

                                                                     '

s s sE E u                                                           (11) 

where Es is the Young’s modulus of steel. 

 

The differential equations for the long-term analysis of the CFST column can be obtained using the 

virtual work method. When the virtual work principle is used for the long-term equilibrium of the 

CFST column, it can be stated as  

                                                    0
s c

s c
V V

W dV dV Pu                                             (12) 

where Vs is the volume of the steel tube, Vc is the volume of the concrete core,  ( ) denotes the 

Lagrange operator of simultaneous variations. By substituting Eqs. (1), (2) and (4), the statement of 

the principle of virtual work given by Eq. (13) can be written as 

                                     "

0
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Integrating Eq. (13) by parts leads to the differential equation of equilibrium for the long-term 

behavior of CFST column 

                                                                                 " 0u                                                              (14) 

and leads to the static boundary condition for CFST column as  
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                                                          + 0s s c cA A P     at x=L                                                  (15) 

where L is the length of the CFST column. The essential geometric boundary condition is 

                                                                      u = 0 at x = 0                                                            (16) 

The long-term displacement of the CFST column can be obtained from Eq. (14) - (16) as 
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and the strain of the steel tube and concrete core can be obtained from Eq. (17) as 
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In this paper, the final creep coefficient 
final  and the final shrinkage strain 

shfinal can be described 

in terms of interval variables as 
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Based on the interval arithmetic and the deterministic solutions of long-term displacement, the 

interval long-term displacement of CFST column can be obtained from Eq. (17) as 
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and the interval strain of the steel tube and concrete core can be obtained from Eq. (18) as 
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2.2 Interval buckling analysis 

The classic equilibrium equation for column can be expressed as   

                                                                                         
4 2

4 2
0

d v d v
EI P

dx dx
                                                                     (25) 

where x denotes the axial coordinate, v is the transverse deflection, P is the applied axial force, E is 

the Young’s modulus and I is the second moment of area. By using the kinematic boundary 

conditions that v =0 at 0,x L  and the static boundary conditions, the solution of Eq. (25) can be 

obtained as 

                                                                        1 sinv C x                                                              (26) 

where   is a time-dependent dimensionless axial force parameter defined by 

                                                                      2
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where P can be express as  
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Considering the ecE  is an interval variable, Eq. (26) becomes 
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3. Interval finite element analysis 

The equilibrium equations of the CFST column can be derived from the principle of virtual work 

that requires 

                          { } { } { } { } { } { } 0
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The relationship between the stress and strain of concrete core can be expressed as 
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where [ ]I

ecD is the interval stress-strain matrix for concrete core. Similarly, the relationship between 

the stress and strain of the steel tube is 
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Strains are determined from displacements, that is 

                                                                     { } [ ]{ }I IB u                                                      (35) 

where [ ]B  is the strain-displacement matrix.  

Substituting Eqs. (33) to (35) into Eq. (32) yields  
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The CFST member is assumed to deform from the previous equilibrium state defined by {P} and {u} 

to an incremental equilibrium state defined by{ }P P and{ }u u . Applying principle of virtual 

work, we can obtain  
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By using Taylor’s series expansion, Eq. (40) becomes   

                                                   
( ) ( )

{ } { } { } { } 0T I T

I

dU dU
u p

u p

 
   

 
                                (38) 

Substituting Eq. (36) to Eq. (38), we have 

                                                   { } ( ) { } ( )I T I I I T I

Tdu K u u du P u                                      (39) 

where Iu  is the increment of interval displacement of the structure, ( )IP u  is the increment of 

load. ( ) I

TK u  is the interval tangent stiffness matrix of the structure and can be expressed as 
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of which I

sK  is the linear interval elastic stiffness matrix for steel tubular, 
I

ecK  is the interval 

effective stiffness matrix for concrete core, and I

shK  is the interval strain stiffness caused by 

shrinkage. 
I

ecK  and I

shK  are both dependent on time. The tangent stiffness matrix is updated after 

each increment of load or each increment of displacement due to creep and shrinkage.  

 

4. Model validation and discussions 

4.1 Determination of intervals for the final shrinkage strain and creep coefficient 

The empirical values of the final shrinkage strain I

shfinal and creep coefficient I

final  are proposed 

in several experimental studies. The value of the final shrinkage strain given by Han et al. (2004), 

Morino et al. (1996), Terrey et al. (1994) and Uy (2001) is 43.5, 83.6, 50 and 160, respectively. 

Correspondingly, the final creep coefficient is 0.5, 0.83, 1.0 and 1.5 respectively. These values vary 

considerably. To account for these variations in the long-term analysis of CFST columns, the 

interval of the final shrinkage strain and creep coefficient of their concrete cores can be derived 

from these test results as 
shfinal  = [43.5, 340] and 

final  = [0.5, 1.7] respectively, which are used in 

this study. It can be expected that the results obtained by the interval models proposed in this paper 

will contain these experimental results, in other words, the experimental results will fall into the 

interval bounds produced by the proposed models. 

 

4.2 Long-term behavior of CFST column by interval analytical analysis 

Han et al. (2004) carried out long-term tests on CFST square section columns. The dimensions of 

the square section are 100 mm and the thickness of the square section is 2.93 mm. The length of the 

CFST columns is L = 600mm. Young’s modulus of the steel tube Es = 202 × 10
3 
MPa and Young’s 

modulus of the concrete core Ec = 29200 MPa. The first loading time is 28 days after concrete core 

casting. A central axial load of 360 kN was applied to the CFST columns.  

 
Figure 2. Comparison of creep and shrinkage strains 

 

The analytical interval solution for the strain of CFST columns is compared with the test results in 

Figure 2. It can be observed that the interval uncertainty analysis can provide good upper and lower 

bounds for test results. 

 

4.3 Interval numerical buckling analysis 
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Figure 3. Interval critical buckling load on long-term sustained loading 

 

 

 
Figure 4. Compression force on concrete core when buckling 

 
 

Fig. 3 shows the interval critical buckling load under long-term sustained load obtained by the 

interval finite element analysis method. Figs.4 shows the compression force on concrete core 

/c crf N  with time t, respectively. Young’s modules of the steel and concrete are 

200sE GPa and c 30E GPa .The size of section is100mm 100mm 3mm  . The length is 1000 

mm. 

 

It can be seen from Fig. 3 that when time t increases, the critical buckling load decreases 

significantly due to the effects of the creep and shrinkage. The decrease range is [7%, 20%] at 

t=300days. Fig. 4 shows that, along the time t, the “buckling resistance contribution” from the 

concrete is decreasing while form the steel tubular is increasing. 

 

 
Figure 5. Axial strain for limit point buckling 
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Fig. 5 shows the compression force on the concrete core with axial strain. Buckling is investigated 

in a way that the column under an incremental load and the load criterion applies (Zhou, 2010). 

When creep buckling tends to happen, increment of the load becomes very small. From these 

figures, it can be seen that the axial strain is becoming smaller when buckling happens, in other 

words, the buckling resistance of the column is decreased due to the creep and shrinkage. 

 

5. Conclusions 

This paper presents a theoretical study on the uncertain long-term and buckling analysis of 

concrete-filled steel tubular columns. An interval analytical model based on the algebraically 

tractable age-adjusted effective modulus method is proposed to describe the time-dependent 

behavior of concrete in CFST columns. The solution of this model is compared with the 

experimental results reported by other researchers, which show the good agreements. Based on the 

energy method, the formulations for elastic buckling of the steel plate in rectangular CFT columns 

under axial compression are derived. An interval finite element was developed to describe the long-

term behavior and analysis buckling. The buckling load or buckling time can be evaluated using this 

model.  
 

In the future, the proposed models will be further developed to analyze other types of CFST 

structures accounting for the uncertainties in their material and geometric properties. 
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