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Abstract 

Hybrid probabilistic interval dynamic analysis of vehicle-bridge interaction system 
with a mixture of random and interval properties is studied in this paper. The 
vehicle’s parameters are considered as interval variables and the bridge’s parameters 
are treated as random variables. By introducing the random interval moment method 
into the dynamic analysis of vehicle-bride interaction system, the expressions for the 
mean value and standard deviation of the random interval bridge dynamic response 
are developed. Examples are used to illustrate the effectiveness of the presented 
method. A hybrid simulation method combining direct simulations for interval 
variables and Monte-Carlo simulations for random variables is implemented to 
validate the computational results.  

Keywords: Vehicle-bridge interaction system, probabilistic interval analysis, random 
interval moment method, random interval dynamic response. 

Introduction 

The coupled vehicle-bridge dynamic system has attracted considerable attentions over 
the past two decades (Yang and Lin, 2005; Ju and Lin, 2007; Zhang et al., 2008).  The 
values of system parameters are given precisely in most of studies. Actually, vehicles 
moving on a bridge have nondeterministic characteristics because the system 
parameters are not constant.  
 
Probabilistic methods are preferred when information of uncertain parameters in the 
form of preference probability function is provided. And these have been widely used 
to predict the response and in the implementation of structural system reliability 
evaluation of uncertainty (Liu et al., 2011). In probabilistic methods, uncertain 
parameters are modeled as random variables/fields and uncertainties of loads are 
described by random processes/variables. However, sometimes it is hard to get the 
enough probabilistic information for structural parameters as their values are affected 
by a lot of non-deterministic factors. Meanwhile, loads of many scenarios can hardly 
be modeled as random variables due to large changes in their magnitudes. The 
interval methods can be used when the probability function is unavailable but the 
range of the uncertain parameter is known. In the past decade, significant progress in 
analysis and optimal design of structures with bounded parameters has been achieved 
(Qiu et al., 2009; Jiang et al., 2008; Impollonia and Muscolino, 2011). 
 
It is desirable to model structural parameters/loads as random variables if sufficient 
information can be obtained to form the probability density functions. Meanwhile, 
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some structural parameters/loads might be best considered as interval variables if the 
information/data are not enough to model uncertain structural parameters and 
loadings as random variables, especially in the early design stages. Consequently, 
hybrid probabilistic interval analysis and reliability assessment of structures with a 
mixture of random and interval properties has been conducted (Gao, 2010). The 
random interval moment method has been developed by the authors to determine the 
mean value and standard deviation of random interval responses of structures under 
static forces (Gao, 2010). 
 
As aforementioned, some parameters of vehicle-bridge interaction system could be 
considered as random variables and some of them might be assumed as interval 
variables. For example, the change range of vehicle's mass is large due to the 
different loading conditions; therefore, these can be taken as interval variables. In 
contrast, the change ranges of bridge's parameters are small because of the strict 
manufacturing standards, which can be considered as random variables.  Therefore, a 
hybrid probabilistic interval analysis model for vehicle-bridge coupled systems needs 
to be developed. 

Random interval moment method 

Let )(RX  be the set of all real random variables on a probability space ),,( PA , 
Rx is a random variable of (R). R  denotes the set of all real numbers. x  (or x ) 

and x  are the mean (deterministic) value and standard deviation of Rx , respectively. 

 RyyytytyyyI  ,,],[  is an interval variable of )(RI  which denotes the 

set of all the closed real intervals. y and y  are the lower and upper bounds of interval 

variable Iy , respectively. Interval variable Iy can also be written as 
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where cy , y , Iy  and Fy  represent the midpoint value, maximum width (interval 

width), uncertain interval and interval change ratio of the interval variable Iy .  
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where R is the remainder term. 
 
From this equation, and the higher order terms R  is ignored, the expectation and 

variance of random interval variables ),( IRRI YXfZ


  can be calculated as (Gao et 

al., 2010)  
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Vehicle-bridge interaction model 

In the vehicle-bridge interaction system, the bridge is modeled as a simply supported 
beam (Yang, 2005) and the vehicle is represented by a half-car model as shown in 
Figure 1. Here, vm , 1m and 2m  denote the sprung and unsprung masses respectively; 

the suspension system is represented by two linear springs of stiffness 1sk , 2sk and 

two linear dampers with damping rates 1sC , 2sC ; the tires are also modeled by two 

linear springs of stiffness 1tk , 2tk  and two linear dampers with damping rates 1tC , 

2tC ;  , E , I and L are the mass per unit length, elastic modulus, moment of inertia 

and length of the beam respectively. 
 
In this study, parameters of the vehicle 

1

Im ,
2

Im , and 
v

Im , are considered as interval 

variables, meanwhile, bridge’s parameters, R , RE  and RI , are treated as random 
variables. The equation of motion governing the transverse vibration of the bridge 
under the moving vehicle with uncertain parameters can be written as   
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                   Figure 1. Model of vehicle-bridge interaction system 
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where C  is the damping of the bridge, ( , )IRW x t  is the random interval vertical 

displacement of the bridge, ( )RI
vx t is the random interval vertical displacement of the 

moving vehicle, 
1

( , )RIf x t  and 
2

( , )RIf x t are the random interval contact forces, 

( )x vt  is the Dirac delta function evaluated at the contact point at position x vt , 
and v  is the speed of the moving vehicle. Using the modal superposition method, the 
solution to Eq. (5) can be expressed as in terms of the mode shapes ( )j x . 

                                
In this paper, the Wilson’s damping hypothesis is adopted. As vehicle mass is much 
less than the bridge mass and the tires’ damping is quite small. Using the Duhamel 
integral solution, the displacement response of the bridge can be calculated by 
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In this study, the contribution of tires’ stiffness to bridge vertical displacement 
response is omitted due to the assumption that the bridge mass is much greater than 
that of the vehicle(Yang, 2005). Additionally, bridge damping is treated as 
deterministic because the existing research outcomes show that the mechanism of 
structural damping is still not clear enough.  
 
Furthermore, the lower and upper bounds of the mean value of the bridge's 

displacement ( )RIW  are given by 
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Numerical Simulations 

In this paper, the vehicle-bridge interaction model is demonstrated as the Figure 1. 
The bridge's parameters are considered as Gaussian random variables. The parameters 
of vehicle are treated as interval variables. The nominal values (mean/midpoint 
values) of system parameters taken in the numerical simulation are listed in Table 1. 
The unit of the bridge displacement response is meter in this paper. 
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In this study, the bridge damping ratios bj  for all modes are taken as 0.05. For the 

sake of simplicity, the coefficient of variation (COV) of R , RE  and RI  is adopted to 
represent the dispersal degree of random variables. Meanwhile, the interval change 
ratio (ICR) of 

1

Im ,
2

Im , and 
v

Im is used to describe the scatter level of interval 

variables. vehicle speed, 5 /v m s  is taken into account to investigate the influence 
of vehicle velocity on the bridge response. 

Table 1. Data of the vehicle-bridge model 

Data of the bridge (mean value) Data of the vehicle (midpoint) 
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The mean value of the random interval bridge displacement response at its mid-span 
is given in Figures 2(a) (COV( R , RE , RI )=0.05, ICR(
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Im )=0.2) and(b) 

(COV( R , RE , RI )=0.05, ICR(
1

Im ,
2

Im ,
v

Im )=0.1),  when different combinations of 

uncertain parameters are taken. Figure 2 shows the mean bridge displacement 
response when the randomness of all random parameters and all interval parameters 
are considered. From Figure 2, it can be observed that the interval width of bridge 
response increases when the interval changes of interval variables become larger.  

In summary, the mean value of the random interval bridge response is independent of 
the dispersal degrees of random system parameters as expected. The interval width of 
the mean value of bridge response is directly proportional to the uncertainties of 
interval variables and vehicle speed.     
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      (a)                                                                  (b)  
Figure 2. Mean value of random interval bridge displacement response  

 
The standard deviation (SD) of the random interval bridge displacement response at 
its mid-span is shown in Figures 3(a) and (b). It can also be observed that the interval 
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width of the standard deviation of the random interval bridge response is directly 
proportional to the uncertainties of random and interval variables from Figures 3. 
 
To validate the accuracy of the random interval moment method (RIMM) presented 
in this paper, a hybrid simulation method (HSM) is employed. This hybrid simulation 
method (HSM) combines direct simulation for interval variables and Monte-Carlo 
simulations for random variables. 

To show the differences between the results generated by the RIMM and HSM in 
detail, the relative errors of mean value and standard deviation of bridge displacement 
are listed in Tables 2 and 3. Given the maximum relative error is 1.10% , while the 
coefficients of variation for all random parameters are 0.05 and the interval change 
ratios of all interval parameters are 0.2, the mean values calculated by the two 
methods are very closed to each other. For the standard deviation, the maximum 
relative error is 6.45%, which can be accepted because the hybrid simulation times 
used in this study are not enough to provide convergent results. 10,000 simulations 
used in the two rounds of HSM cannot yield convergent and reliable results although 
the total simulations are 106. The accuracy of the results obtained by the HSM can be 
improved if more simulations are implemented. 
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Figure 3. Standard deviation of random interval bridge displacement 
 
Generally, the accuracy of these results is satisfactory in practice. The presented 
random interval moment method has much less computational work than the 
simulation method. It should be noted that the accuracy of the results of random 
interval moment method can be further improved if second or higher order Taylor 
expansions are used. 

Table 2. Comparison of mean values  

Time (s) 
Upper bound Lower bound 

RIMM HSM Error RIMM HSM Error 
1 0.02663 0.02671 0.29% 0.01793 0.01790 0.17% 
2 0.04437 0.04461 0.55% 0.02958 0.02947 0.36% 
3 0.05327 0.05353 0.49% 0.03550 0.03549 0.02% 
4 0.05671 0.05680 0.16% 0.03781 0.03768 0.35% 
5 0.05459 0.05467 0.14% 0.03639 0.03610 0.81% 
6 0.04420 0.04436 0.37% 0.02961 0.02929 1.10% 
7 0.02482 0.02506 0.97% 0.01636 0.01625 0.68% 
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Table 3. Comparison of standard deviations  

Time 
Upper bound Lower bound 

RIMM HSM Error RIMM HSM Error 
1 0.00521 0.00547 4.72% 0.00347 0.00339 2.33% 
2 0.01394 0.01415 1.50% 0.00923 0.00894 3.22% 
3 0.00886 0.00894 0.91% 0.00589 0.00577 2.14% 
4 0.03162 0.03182 0.62% 0.02108 0.02095 0.63% 
5 0.00852 0.00854 0.19% 0.00568 0.00549 3.54% 
6 0.02617 0.02797 6.45% 0.01744 0.01713 1.83% 
7 0.01596 0.01638 2.57% 0.01064 0.01024 3.87% 

Conclusions 

In this paper, stochastic dynamic response of vehicle-bridge interaction system with 
uncertainties is investigated by extending the random interval moment method to the 
dynamic coupling system. The uncertainties of system are modeled as random and 
interval variables. The expressions for calculating the bounds of expectation and 
variance of the random interval bridge response are derived. Using these 
formulations, the upper and lower bounds of mean value and standard deviation of 
bridge response can be very easily obtained. The results obtained by the presented 
random interval moment method are in very good agreement with those determined 
by Monte-Carlo simulation method. The relative errors of these two methods are 
quite small when the change ranges of system parameters are not large.  
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