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Abstract 
Nonlinear acoustic wave propagation equation with void fraction (volume fraction of gas phase) is 
derived and numerically solved for the simulation of HIFU (High Intensity Focused Ultrasound) 
with micorbubbles in the present paper. HIFU is one of promising treatments for cancer. The 
focused pressure waves generate heat and necrose cancer cells. It has been lately reported that the 
existence of micorbubbles enhances heating at the focal area and the present paper is intended to 
clarify this mechanism with numerical approach. After describing the derivation of the governing 
equations and the detail of the numerical method, computed results with varying initial void 
fractions and bubble sizes are presented to show the propagation of ultrasound and the bubble 
motions in the focal area. Additionally heat generation by microbubbles are also simulated and 
evaluated. 
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Introduction 

HIFU (High Intensity Focused Ultrasound) is a promising treatment for cancer because of its low 
invasiveness, high controllability and low cost compared with other existing methods. On the other 
hand, HIFU has a problem when it is applied to deep body such as liver cancer. Ultrasound may 
reflect and refract due to non-uniformity of body tissue and the focal area then shifts or diffuses. At 
the same time, attenuation of ultrasound during the propagation is not also negligible. As a result, 
insufficient energy reaches the lesion. To overcome this problem, utilization of microbubbles is 
proposed (Bailey et al., 2001; Holt and Roy, 2001). Bubbles exposed in ultrasound oscillate 
volumetrically and convert kinetic energy of ultrasound into heat energy. This phenomenon has 
been experimentally observed but the detailed mechanism has not yet been clear. In this paper, 
ultrasound wave propagation in fluid with microbubbles is numerically simulated. First, nonlinear 
acoustic wave propagation equation with void fraction (volume fraction of gas phase) is derived. 
Second, the above equation is solved with Keller equation that describes the volumetric motion of a 
bubble, varying initial bubble size and void fraction. Finally heat generation by bubbles is 
numerically simulated solving the heat conduction equation to evaluate the effect of bubbles. 

Derivation of Equations 

Nonlinear acoustic wave propagation equation with void fraction is derived from the following two 
conservation equations and one constraint. 
• Conservation of mass 
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• Conservation of momentum 
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• Volume constraint 
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Suffix L denotes liquid and G denotes gas. f the volume fraction, ρ the density, u the velocity, P the 
pressure and r the radius. Here bubbles are assumed to be all spherical and to keep number density 
nG be constant. Following the derivation of KZK (Khokhlov – Zabolatskaya – Kuznetsov) equation 
(Zabolotskaya and Khokhlov, 1969; Kuznetsov, 1970) to introduce small perturbation up to the 
second order terms and Aubry et al.’s idea of ultrasound propagation in inhomogeneous medium 
(Aubry et al., 2003), the following equation is obtained finally. 
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where λ is heat conductivity, c is speed of sound, p is perturbation pressure, cv and cp are specific 
heat at constant volume or pressure, respectively and suffix 0 denotes the equilibrium state. β is 
called nonlinear coefficient and is a material property. For volumetric oscillation of bubbles, the 
Keller’s equation (Keller and Kolodner, 1956) is solved together with eq. (4).  

! 

rG 1"
1

cL0

drG

dt

# 

$ 
% 

& 

' 
( 
d
2
rG

dt
2

+
3

2
1"

1

3cL0

drG

dt

# 

$ 
% 

& 

' 
( 
drG

dt

# 

$ 
% 

& 

' 
( 

2

=
1

)L0
1+

1

cL0

drG

dt
+
1

cL0

rG
d

dt

# 

$ 
% 

& 

' 
( PG "

2*

rG

"
4µL
rG

drG

dt
" PL

# 

$ 
% 

& 

' 
( 
     (5)

 

where rG is bubble radius, σ is the surface tension, µ is viscosity coefficient. PG, the pressure inside 
of the bubble, is obtained with a reduced-order model (Preston and et al., 2002; Sugiyama et al., 
2005). Lastly the heat conduction equation (6) is used for estimating the temperature rise around the 
focal area. 
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where 
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and they are the thermal conduction from a bubble and the viscous dissipation of surrounding liquid, 
respectively. 

Numerical Methods 

Equations (4) and (6) are solved by a finite difference method. The spatial terms are discretized 
with second order central difference and the temporal terms are discretized with second order 
backward difference, resulting the second order accuracy scheme. The Keller’s equation (5) is 
integrated with 2nd order Runge-Kutta method. 
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Results and Discussions 

The present problem setup is illustrated in Fig. 1. The right hand side of area is assumed to be 
human body and bubbles are uniformly distributed. The outside of the body is filled with water. 
Thus reflection and fraction are expected to occur at the interface. Typical conditions are 
summarized in Table 1. 

 
Figure 1.  Problem Setup 

 
Table 1. Summary of conditions 

Liquid phase, Gas phase Water, Air 
Liquid density 1,000 kg/m3 

Sound speed of liquid 1,500 m/s 
Liquid viscosity 8.64×10-4 Pa·s 

Liquid specific heat at constant pressure 4.179 J/kg K 
Liquid specific heat ratio 1.012 

Liquid thermal conductivity 6.1×10-1 W/m K 
Coefficient of nonlinearity 3.5 

Initial pressure 101.3 kPa 
Input frequency 1.0 MHz 

Wave cycle Continuous wave 
Void fraction 0.0, 1.0×10-6, 10-5, 10-4 
Bubble radius 2.4, 3.4, 4.4, 10.0 µm 

Surface tension 7.2×10-2 N/m 
Gas specific heat ratio 1.4 

First, Figure 2 shows a comparison with the other research result (Okita et al., 2012) of similar problem 
setting, solved with a stricter but more time consuming method. The maximum pressure distribution on 
the axis of symmetry shows good agreement, especially the pressure drop at the focal area with higher 
void fraction case. Figures 3 show maximum absolute pressure distribution under the continuous wave 
radiation with two void fractions. High void fraction prevents ultrasound to penetrate and the pressure in 
focal area is much lower. Figures 4 compare the effect of bubble size with initial void fraction of 10-6. The 
radius of 3.4µm is the resonance radius of 1MHz for the linear theory. However the result suggests that 
2.4µm is closer to the resonance due to the nonlinear effect, because the bubbles react more violently. 
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Figure 2  Validation of the present method; maximum pressure distribution on the axis of 
symmetry. left: Okita et al. (2012), right: present 
 

       
 

0.0                               [MPa]                               6.0 
(a) fG0=10-6              (b) fG0=10-5                           (c) fG0=10-4 

Figure 3  Pressure distribution for different void fractions 
 

       
 

1.0                               [rG/rG0]                               7.0 
(a) rG0=2.4[µm]     (b) rG0=3.4[µm]                     (c) rG0=4.4[µm] 

Figure 4  Maximum radius distribution for different initial radius 
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Finally, Figures 5 give temperature rise due to the bubbles after 30 second in cases of Fig. 3. In the case of 
2.4µm radius, bubbles oscillate close to the interface and thus the temperature at the focal area does not 
rise. 

       
 

1.0                               [rG/rG0]                               7.0 
(a) rG0=2.4[µm]     (b) rG0=3.4[µm]                     (c) rG0=4.4[µm] 

Figure 5  Temperature rise for different initial radius 
 

Conclusions 

In order to be applied for HIFU simulation, nonlinear acoustic wave propagation equation with void 
fraction was derived and numerically solved with Keller’s equation. A simple setup of focused 
ultrasound field with microbubbles gave reasonable results and revealed the effect of void fraction 
and bubble size. Heat conduction equation was also solved to demonstrate the heat generation of 
bubbles. 
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