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Abstract 

In this paper, a doubly periodic array of inclusions in infinite plane matrix is studied for analyzing 
its effective elastic properties. A representative rectangular cell containing single inclusion is taken 
from the composites and then is investigated using the present hybrid finite element model to obtain 
numerical results of boundary tractions under the applied displacement boundary conditions. In the 
present numerical model, a general polygonal hybrid finite element with arbitrary number of sides 
is constructed by coupling the independent element interior and frame displacement fields. The 
element interior fields are approximated by the combination of fundamental solutions to prior 
satisfy the governing equation of the problem, so that the domain integral appeared in the weak-
form functional is converted into boundary integrals. Independently the element frame fields are 
approximated by the conventional shape functions to guarantee the continuity conditions across 
inter-element  boundaries. Following this, the polygonal inclusion elements are designed to reduce 
mesh effort in the inclusion domain. Numerical tests are conducted for assessing the performance of 
the element model and it is found that the present method gives good accuracy as compared with 
the conventional finite element. 

Keywords: Representative volume element; Effective elastic properties; Fundamental solutions; 

Polygonal inclusion element.  

Introduction 

In the context of composite with reinforced inclusions, the simplified model with periodic 

distribution of multiple inclusions is usually taken as an example for determining the corresponding 

effective properties of composites. However, the analytical methods (Yu and Qin, 1996; Feng et al., 

2003; 2004; Bonnet, 2007; Nemat-Nasser and Hori, 1999; Qin and Yang, 2009; To et al, 2013) like 

fast Fourier transforms and so on are usually difficult to deal with composites containing the 

inclusion with complicated geometric shapes or distributions. As alternatives to the analytical 

methods, numerical methods were developed for solving composite problems involving various 

periodic inclusions (Dong, 2006; Kaminski, 1999; Michel et al., 1999; Qin, 2004; Yang and Qin, 

2003; 2004; Wang and Qin, 2011a; Würkner et al., 2011). For example, Würkner et al. (2011) 

evaluated the effective material properties for composite structures with rhombic fiber arrangements 

by the finite element method (FEM). Michel et al. (1999) compared the two numerical methods 

including the finite element method and the fast Fourier transform-based numerical method in 

determining effective properties of composite materials with periodic microstructure. Yang and Qin 

(2003) studied the effect of fiber bundling on the effective transverse properties of unidirectional 

fiber composites by way of finite element method. Dong (2006) employed the boundary element 

method (BEM) to predict the effective elastic properties of composites including doubly periodic 

array of inclusions. Yang and Qin (2004) extended the boundary element formulation to the micro-

mechanical analysis of composite materials. Kaminski (1999) employed the boundary element 

method based homogenization to deal with the periodic transversely isotropic linear elastic fiber-

reinforced composites. Besides the FEM and the BEM, Wang and Qin (2011a) developed the 

hybrid finite element formulation for analyzing the effective thermal conductivity of fiber-

reinforced composites, in which the fiber can be regularly, or randomly distributed. 
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Among the numerical methods mentioned above, the hybrid finite element method based on 

fundamental solutions has shown its advantages over the others (Qin, 2005; Qin and Wang, 2008; 

Wang and Qin, 2010). One feature of the method is the use of special elements. Within the 

developed special elements (Wang and Qin, 2011b), special fundamental solutions analytically 

satisfying the governing equations and certain boundary conditions are employed to approximate 

the internal displacement and stress fields. Besides the development of special elements based on 

the special fundamental solutions, another feature of the hybrid model is to construct arbitrarily 

shaped elements with more nodes and edges, because all integrals appearing in the hybrid model are 

boundary integrals along the element frame. 

In the paper, large polygonal elements or super elements with many edges and nodes are 

developed for solving such problems as composites with doubly periodic circular inclusions, and 

the corresponding hybrid finite element formulation for calculating effective properties of the 

composite is presented. 

Computational model and effective elastic properties 

Consider a composite with doubly periodic inclusions of arbitrary shape in an infinite plane matrix 

subject to remote tension 11 
, 22 

 and in-plane shear forces 12 
(see Fig. 1). The elastic parameters 

of inclusion and matrix are respectively denoted by (I)E  and (I)v , and (M)E  and (M)v . 

 
Fig. 1 Sketch of doubly periodic inclusions with arbitrary shape in the infinite plane matrix and a rectangular 

cell containing single inclusion of arbitrary shape 

For such periodic structure, a representative rectangular cell shown in Fig. 1 with edge length 2l  

and 2h  along the coordinate directions 
1x  and 

2x  are chosen as an example. On the outer boundary 

of the cell, the suitable periodic boundary conditions corresponding to remote tension and shear 

forces, respectively are given by (Dong, 2006). 

 

Because a solid containing doubly periodic array of inclusions with arbitrary shape considered in 

the paper is usually considered as a homogeneous orthotropic solid, the corresponding constitutive 

relationship associated to average stresses ij  and strains ij  can be written as (Kaw, 2006; Nemat-

Nasser and Hori, 1999) 

 11 11 1 21 22 2 22 22 2 12 11 1 12 12 12/ / ,   / / ,   /E E E E G               (1) 

where 1E , 2E , 
21 , 

12  and 12G  are effective orthotropic elastic parameters, respectively. 

In order to determine the effective elastic properties 2E  and 
21 , the remote loading conditions 

can be given by 

 11 22 120,   ,   0p        (2) 
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Thus, in the effective homogeneous orthotropic solid, the average stress and strain states are 

separately written by 

 
11 22 12 11 1 22 20,   ,   0,   / ,    /l hp u l u h          (3) 

Substituting Eq. (3) into Eq. (1) yields 

 
11 21 2 1 2 2

21 1 222 2 2

/ / /

/ ( )/ /

l h

l hh

p E u l E ph u

u h u lp E u h

     
 

   

 


 (4) 

where 
1lu , 

2lu , 
1hu  and 

2hu  are the unknown displacements to be determined. 

Similarly, in order to determine the effective elastic properties 1E  and 
12 , the remote loading 

conditions can be given by 

 11 22 12,   0,   0p        (5) 

To find the effective shear modulus, one needs to apply the remote shear loading, i.e. 

 11 22 120,   0,   p        (6) 

The corresponding average stress and strain states can be written as 

 
11 22 12 12 2 10,   0,   ,   / /l hp u h u l         (7) 

Substituting Eq. (7) into Eq. (1), one obtains 

 
12 12/G p   (8) 

From the procedure above, it can be seen that for three cases including single tension along the x1 

direction, single tension along the x2 direction and in-plane shear, the relation of the remote stresses 

and the displacement boundary conditions should be established to determine the effective 

properties of the composite. According to the formulations in the literature (Dong, 2006), the 

traction variation along the outer boundary of the cell taken from the composite must be evaluated 

under the applied unit displacement boundary conditions, and this procedure can be performed by 

using the present super element below. 

Basic formulations and polygonal inclusion elements 

Basic formulations 

For the matrix and inclusion under consideration, the integral formulation of hybrid finite element 

in a particular hybrid element e  can be written as follows (Wang and Qin, 2010; Wang and Qin, 

2011b) 

  T T T1
d d d

2
s

e e e
me

  
        σ ε s u s u u  (9) 

where 
T

11 22 12{ }  σ , 
T

11 22 12{ }  ε  and 
T

1 2{ }u uu  are respectively stress, strain 

and displacement fields in the element domain 
e , 

T

1 2{ }u uu  is the compatible displacement 

field defined on the boundary 
e e   with an outward normal 

T

1 2{ }n nn , s Aσ  is the 

traction field and s
 
denotes the specified traction on the boundary

 
s

e . 

     Provided that the internal displacement and stress fields satisfy the governing equation in the 

element domain, applying the Gaussian divergence theorem to the functional me  yields 

 

T T T1
d d d

2
s

e e e
me

  
         u s s u s u

    (10)  

In the application of variational principle, the displacement field in the interior of the element is 

approximated by a linear combination of fundamental solutions centered at series of source points 
s

x  locating on the pseudo boundary similar to the element boundary e , that is, 

 eu Nc  (11) 
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Subsequently, according to the strain-displacement equations and the stress-strain relationship, 

the corresponding stress components and tract components are expressed as 

 eσ Tc    and    es Qc
 

(12) 

In order to enforce the conformity of the displacement field on the common interface of adjacent 

elements, the element boundary displacement field u  can be interpolated from the generalized 

nodal displacement 
ed  in the form 

 eu Nd  (13) 

where N  denotes the matrix consisting of shape functions widely used in the standard FEM and 

BEM.  

The substitution of Eqs. (11) and (13) into the functional Error! Reference source not found. 

including boundary integrals only gives 

 T T T1

2
me e e e e e e e e    c H c d g c G d  (14) 

where 

 T T Td ,   d ,   d
s

e e e
e e e

  
       H Q N G Q N g N s  (15) 

The stationary of 
me  with respect to the displacement coefficient 

ec
 
and nodal displacement 

ed  

yields the following optional relationship between 
ec  and 

ed  

 
1

e e e e


c = H G d  (16) 

and the element displacement-load equation given by 

 
e e eK d = g  (17) 

where 
1

e e e e

T
K = G H G  is the symmetric element stiffness matrix, like the one in the conventional 

FEM. 

Polygonal inclusion elements 

It’s known that the conventional displacement finite element method with polynomial 

representations is difficult to construct an element with arbitrary number of sides. However, from 

the hybrid formulation described above we can see that it is appropriate for constructing n-sided 

polygonal elements more nodes and edges than the conventional finite elements, due to the fact of 

the independence of interior displacement fields and boundary displacements. More importantly, 

because the interior approximation displacement and stress fields analytically satisfy the elastic 

governing equations within the element domain, all integrals are evaluated along the element 

boundary. Thus, it’s possible to design the super elements with multiple element edges to achieve 

the effort of mesh reduction in the inclusion region. 

Although arbitrarily shaped inclusions such as circular, triangular or square inclusions can be 

studied theoretically using the present hybrid finite element formulation, in the paper, just the 

circular inclusion is studied for the sake of simplicity. Then, the hybrid super elements with multi-

edges shown in Fig. 1 can be used to model the inclusion. In Fig. 1, the solid line represents the 

inclusion element boundary, while the dash line is the pseudo boundary which is similar to the 

element boundary from the point of geometry. The triangle symbol is the center of the inclusion of 

interest. Source points are preassigned on the pseudo boundary and can be generated by means of 

the relation 

 
s

c b x x x  (18) 
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where 
s

x  and 
bx  are respectively the source point and boundary node, and 

cx  denotes the element 

centroid. The dimensionless parameter   scales the distance of the pseudo boundary and the 

element boundary (Wang et al, 2005; Wang and Qin, 2008). 

 
Fig. 1 Configuration of hybrid element with multi-edges for circular inclusion 

 

Numerical examples 

The matrix in the composite with doubly period circular inclusions is considered to be isotropic and 

homogeneous, and the elastic modulus and Poisson’s ratio of the medium are respectively taken as 

E
M

=1, ν
M

=0.3. The isotropic and homogeneous elastic inclusion is assumed to have same Poisson’s 

ration as that of matrix, and its elastic modulus is assumed to be E
I
/E

M
=10. For the sake of 

convenience, the geometry size of the RVE is taken as h/l=1 with the assumption of 0.5h  . 

In order to investigate the effect of inclusion on the mechanical properties of composites, the 

effective elastic properties are compared for the circular inclusion under same volume fraction. For 

example, if the value of volume fraction is supposed to be  , the corresponding geometrical 

characteristic parameter for the circular inclusion can be determined, i.e. radius of the circular 

inclusion= 4 /hl  . 

Inversion of H matrix  

From the hybrid finite element formulation given above, one observes that the mechanical 

properties of the present hybrid element with multiple edges are associated with the inverse 

operation of matrix H. In order to investigate the accuracy of the inverse operation of matrix H, the 

following problem involving the circular inclusion only is firstly considered. The radius of the 

circle is taken to be unit. The boundary of the circle is discretized by one super element with k 

edges including three nodes each, thus the total number of nodes for the super element is 2k. 

To reveal the ill-conditioning of the matrix H, the singular value decomposition is employed 

herein. Let H be a square matrix with n by n entries. Then the SVD of H is a decomposition of the 

form 

 
1

n
T T

i i i

i




 H USV u v  (19) 

where 1 2( , , , )nU u u u  and 1 2( , , , )nV v v v  are matrices with orthonormal columns, that is, 
T T U U V V I , and 1 2diag( , , , )n  S  has non-negative diagonal elements appearing in non-

increasing order such that 

 1 2 n      

As a result, the matrix condition number of H can be given by the ratio 1 / n  , and the inverse of 

H is evaluated by 

 1 1 T H VS U  (20) 
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In the following test, a super-element with k =8 and 20 edges is considered and the size of H 

matrix is 4k by 4k. To investigate the accuracy of the matrix inversion of H, we evaluate the norm 

of the residue matrix -1
HH I  for various values of  .  

 
(a) Number of edges k=20                              (b) Number of edges k=8 

 
Fig. 3 The norm for various number of element edges 

 

From the numerical results shown in Fig. 3, we can conclude that the total number of element 

nodes affects the choice of the parameter  , which is important to keep the inversion of H stable 

and accurate. To establish a proper rule to determine the value of   according to the specified 

element type, the maximum value of   is in proper value when the corresponding norm of 

inversion is less than 10
-6

. In Fig. 4, the maximum proper value of   is plotted as the change of 

number of degrees of freedom (DOFs) of the element. Subsequently, the curve fitting technology is 

employed to give an approximated expression of the maximum proper value of   in terms of 

number of DOFs of the element, which is denoted by the symbol x. Here, we employ the 6
th

 degree 

polynomial to perform the curve fitting 

 
6 5 4 3 2

1 2 3 4 5 6 7p x p x p x p x p x p x p         (21) 

with 

 

10 8 7

1 2 3

4 2

4 5 6 7

2.782 10 ,  5.274 10 ,  1.033 10

7.219 10 ,  6.869 10 ,  2.690,  41.92

p p p

p p p p

  

 

      

       
 

 
Fig. 4 The maximum proper value of γ for different number of DOFs of the element 
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Circular inclusion 

Next, in this section, the mechanical response of the composite with circular inclusion is taken 

into considered for the purpose of estimating the effective properties of the composite in the future. 

For convenience, the RVE is assumed to be subjected to a unit uniform tension along the vertical 

direction. 

For a moderate volume fraction of the inclusion, i.e. α=10%, the typical mesh division is shown 

in Fig. 5. To make comparison, we keep the mesh same in the matrix for both ABAQUS and HFS-

FEM, while in the inclusion, the mesh strategy is different. For the mesh discretization generated by 

ABAQUS, some typical quadratic isoparametric elements are produced to discretize the inclusion 

domain. The total number of elements in the ABAQUS is 124 elements with 405 nodes. In contrast, 

a super element with 20 edges is employed in the developed HFS-FEM to model the inclusion and 

no any nodes are put inside the inclusion. Thus, the total number of elements in the present HFS-

FEM is just 81 elements and the number of nodes reduces to 292. It’s clear that the effect on mesh 

reduction is achieved by the present super hybrid element. 

Besides, the variation of traction components along the outer boundary of the RVE is displayed 

in Fig. 6, from which we observe that there is a good agreement between the numerical results of 

HFS-FEM and those of ABAQUS. So, the accuracy and efficiency of the present super hybrid 

element is demonstrated for the analysis of composite embedded with circular inclusions. 

 

       
(a)                                                 (b) 

Fig. 5 Illustration of mesh division in: (a) ABAQUS (b) HFS-FEM for the case of α=10% 

 

   
Fig. 6 Traction distribution along the outer boundary of RVE for the case of α=10% 

 

5. Conclusions 

The present study proposes a fundamental-solution-based hybrid finite element formulation for the 

analysis of unidirectional fiber reinforced composites. The fiber is with circular cross section. By 
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virtue of the property of the present hybrid element, we can construct a super inclusion element 

with multiple edges and nodes for the purpose of mesh reduction and don’t need to make any mesh 

discretization inside the inclusion. The numerical results from the proposed element model are in 

good agreement with those from ABAQUS, which indicates that the present hybrid finite element is 

effective and convenient for determining effective properties of composites with doubly periodic 

array of circular inclusions. In the future, elements for modeling composites containing other 

shaped inclusions including triangular, square and elliptic inclusions will be studied to investigate 

the shape effect of the inclusions on the elastic properties of the composite. 
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