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Abstract 

This paper presents a non-parametric, or a node-based, shape optimization method for designing the 

optimal geometry of a 3-D frame structure composed of arbitrarily curved linear elastic members. A 

design problem dealt with maximizing the natural frequency of a specified mode is formulated as a 

distributed-parameter shape optimization problem. Under the assumption of that each member 

varies in the normal direction to its centroidal axis, the shape gradient function and the optimality 

conditions are theoretically derived by the Lagrange multiplier method and the material derivative 

method. The optimal free-form geometry is determined by applying the derived shape gradient 

function as the fictious external forces to the members to minimize the objective functional, which 

is referred as the free-form optimization method for frame structures, a gradient method in a Hilbert 

space, proposed by the authors. The effectiveness and validity of the proposed method is verified 

through several design problems. 
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Introduction 

Structures composed of thin straight or curved members are classified as frame structures, which 

are widely utilized in the fields of engineering. Large stadiums, bridges, and radio towers are the 

typical examples in urban architecture and civil engineering. The lightness and slenderness are the 

favorable features as they are resource saving and eco-friendly; however, these features are apt to 

result in a lack of stiffness, which may be a cause of noise or vibration. To avoid undesirable 

vibration modes to be dominant and incur noise or fatigue of the composing members when a frame 

structure is exited, it is important to optimize the natural frequency, or the eigenvalue, for designing 

a frame structure. In the early stages of the design process, the shape can often be treated as the 

design variables, and in that case, the mechanical characteristics can be dramatically improved 

rather than optimizing the cross sectional shapes or sizes. Up to today, various numerical shape 

optimization methods for frame structures have been proposed. For instance, Wang, et al. (2004) 

reported simultaneous shape and sizing optimization to minimize the weight under multiple 

frequency constraints by calculating the integrated discrete sensitivity numbers. Ohsaki and Fujita 

(2011) applied the SQP method to multi-objective shape optimization of latticed shells 

parameterized by a Bezier surface. Numbers of heuristic approaches have also been reported; 

Hashemian et al. (2011) applied the genetic algorithm (GA) method for a squared lattice cylindrical 

shell under a compressive axial load to achieve a maximum buckling load. Kaveh and Bakhshpoori 

(2013) reported optimum design of space trusses for achieving minimum weight subjected to the 

stress limitations using the Cuckoo search algorithm (CS) with Levy flights. These are categorized 

in the parametric methods; however, few non-parametric methods have been reported, and 

considering the possible number of members and degrees of freedom of a frame structure, a shape 
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optimization method that can efficiently solve a large scale problem has much utility value. The 

authors proposed the free-form optimization method for frame structures taking up the stiffness 

maximization problems (Shimoda, et al. ,2013). It is a node-based, gradient method in a Hilbert 

space, and it can treat all nodes as design variables and provide a smoothly curved optimal free-

form shape. In this study, we applied this method to natural vibration problems that aim to 

maximize a specified vibration eigenvalue while tracking its natural vibration mode. In the 

following sections, we will describe a non-parametric shape optimization problem for frame 

structures, a formulation of the problem and the shape gradient function, the free-form optimization 

method for frame structures, and calculated design examples.  

Non-parametric shape optimization problem of frame structures 

Governing equation of frame structure 

As shown in Fig.1, a frame structure is defined as an assembly of arbitrarily curved members 

,2,...,{ }j j N   , and each member is consisted of piecewise straight Timoshenko beams, which is used 
for applicability to a wide range of problems by considering shear deformation. The frame structure 
occupies a bounded domain (

3

1
,

N j

j
  


  ), N representing the number of members. The 

notation ( 1 2 3, ,j j jx x x ) and ( 1 2 3, ,X X X ) indicates the local coordinate system with respect to the j th 
member and the global coordinate system, respectively, 
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1 2 3 1 2 3, , ,, ,j j j j j j j j j j j j j j jx ,x ,x x x A x S A S A S                    (1) 

 

where ,jS  jA  and j  express the j th member’s centroidal axis, cross section, and circumference 
surface except the end faces, respectively. Note that, for the sake of avoiding complex notations, the 
superscript j  will often be omitted in the following sections unless necessary. The weak form of 
the governing equation of natural vibration is expressed as Eq. (2), where 1,2,3{ }i iw w  denotes the 
transverse displacement vector in 1 2 3, ,x x x  direction, and 1,2,3{ }ii θ  denotes the rotation vector 
related to the 1 2 3,,x x x  axis.  
 

             ( ) ( ) ( ) ( ) ( ), , , , , , , , , , ,r r r r ra b U U   w θ w θ w θ w θ w θ w θ                      (2) 

 

where 
( )(·) r

 denotes the eigenvector of r th natural mode and 
( )r denotes its eigenvalue.  Moreover, 

the notation 
_

( )  expresses a variation, and U expresses the admissible function space in which the 
given constraint conditions of ( , )w θ  are satisfied. The bilinear form (·,·)a  and (·,·)b are defined 
respectively, as shown below: 
 

        ( ) ( ) ( ) ( ) ( )

1,3 2 3,3 2 1,3 2 3,3 2

1

,  , ,
j

N
r r r r r

j

a w x w x    




    w θ w θ  

   ( ) ( ) ( )

2,3 1 3,3 1 2,3 1 3,3 1

r r rw x w x          

   ( ) ( ) ( )

3,3 1 2,3 2 1,3 3,3 1 2,3 2 1,3 ,r r rw x x E w x x d                                   (3) 

 

          ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 2 3 2 3 1

1

1 32, ,  ,
j

N
r r r r r r

j

b w x w x w x w x    



     w θ w θ  

  ( ) ( ) ( )
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where  , E ,   denote the Lamé parameters, the Young's modulus, and the material density, 
respectively. Moreover, the tensor subscript notation uses Einstein's summation convention and a 
partial differential notation for the spatial coordinates 

,(·) (·) /i ix   . 
 

 
Figure 1. Frame structure composed of members consisting of Timoshenko beams 

 

Domain variation 

In the frame structure shown in Fig. 2, we consider that member j having an initial domain j and 
the centroidal axis 

jS  undergoes the domain variation 
j

V  (design velocity field) in the normal 
direction to the axis such that its domain and axis become 

j

s  and 
j

sS , respectively. The subscript s 
expresses the iteration histories of the domain variation. Defining the notation 1n  and 2n  as outward 
unit normal vectors of the centroidal axis in the 1x  and 2x  directions, 

j
V  can be expressed by: 

 

   1 1 2 2· · .j j j j j j j V V n n V n n                                          (5) 

 

In this study, a beam of a uniform rectangular cross section with height 1h  and width 2h  is 
considered as shown in Fig. 3. The relationships of    · ·t t b b V n n V n n and 

   · ·r r l l V n n V n n are assumed by using the notations 
t

n , 
b

n , 
r

n and 
l

n , which denote the unit 
outward normal vector at the top, bottom, right and left edges of the cross section, respectively. 
Moreover, 1n , 2n denote unit vectors of the centroid in the directions of axis 1x and 2x , and then 
they have the relationships of 1 2,t b r l     n n n n n n , respectively. 

                     
 

Figure 2. Shape variation                       Figure 3. Sign notation of cross section 
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 Eigenvalue maximization problem and the shape gradient function 

With the aim of maximizing the specified order r th vibration eigenvalue
( )r ,  or minimizing -

( )r , 
introducing the natural vibration equation stated in Eq.(2) and the maximum allowable volume as 
the constraint conditions, the shape optimization problems for finding V can be formulated as: 
 

Given    ,                                                                                                       (6)  

find     ,or sV                                                                                                (7) 

that  minimizes  ( ) ,r                                                                                     (8) 

subject to      Eq. (2) and    1

ˆ ,
j

N

j S
M AdS M


                                       (9) 

 

where M and M̂  denote the volume and its constraint value, respectively. 

As the order of the specified mode may differ from the one at the initial shape after the shape is 

updated, MAC (Modal Assurance Criterion) is introduced for tracking the specified mode. MAC 

value is calculated by the following equation, 

 

  

2
( ) ( )

0( ) ( )

0 ( ) ( ) ( ) ( )

0 0

( , ) .

r T i

sr i

s r T r i T i

s s

MAC 
 

 
   

                                           (10) 

 

The notation 
( )

0

r denotes the specified r th eigenvector of the initial shape. 
( )i

s  denotes the i th 
eigenvector ( i =1 to the maximum analysis order) of the shape after s  number of times updated, and 
the superscript T  denotes the transpose of a vector. The mode that has the maximum MAC value in 
all modes is regarded as the corresponding mode to be tracked.  
Allowing ( , )w θ  and   denote the Lagrange multipliers for the specified natural vibration equation 
and the volume constraint, respectively, the Lagrange functional L associated with this problem can 
be expressed as 
  

         ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,r r r r r rΩL Λ b   w θ w θ w θ w θ       ( ) ( ) ˆ, , , . r ra M MΛ  w θ w θ  

(11) 

 

The material derivative L  of the Lagrange functional can be derived as shown in Eq. (12) using the 
design velocity field of the centroidal axis V, the design velocity field on the circumference surface 

V , and an outward unit normal vector n on the centroidal axis or the virtual cross section. 
 

               ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , 1 , , , , , ,r r r r r r r r rL b b b        w θ w θ w θ w θ w θ w θ  

 ( ) ( ) ( ) ( ) ˆ(( ), ( , )) (( , ), ( , ) C ) , ,  r r r ra a M M GΛ 
       w ,θ w θ w θ w n V V               (12) 

 

 0

1

, · ·
j jS

j

G G d G SΓ d




   
N

n V V n V n   

       ( ) ( ) ( ) ( ) ( ) ( )

1,3 2 3,3 2 1,3 2 3,3 2 2,3 1 3,3 1 2,3 1 3,3 1

1

j

N
r r r r r r

j
Γ

w x μ w x θ θ + w x μ w + x θ +θ   


       
   
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   ( ) ( ) ( )

3,3 1 2,3 2 1,3 3,3 1 2,3 2 1,3

r r rw x θ + x θ E w x θ + x θ dΓ   V n  

     ( ) ( ) ( ) ( ) ( )

1 2 3 1 2 3 2 1 1 323j

r r r r r

Γ
w x w x θ w x w x θ          

  ( ) ( ) ( )

3 1 2 2 1 3 1 2 2 1

r r rw x θ + x θ w x θ + x θ dΓ   V n  

,
jS

AH dS  
 V n                                                                                                           (13) 

 

where ( )G n G  expresses the shape gradient function (i.e., sensitivity function), which is a 
coefficient function in terms of V  or V , and the notation H denotes the curvature of the centroidal 
axis. The notations ( )  and 

.

( )  are the shape derivative and the material derivative with respect to 
the domain variation, respectively (Choi and Kim, 2005). 
The optimality conditions of the Lagrange functional L with respect to 

( ) ( )( , )r r
w θ , ( , )w θ  and 

are expressed as: 
 

           ( ) ( ) ( ) ( ) ( ), , , , , , , , ,r r r r ra b   U       w θ w θ w θ w θ w θ                                (14) 

           ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,r r r r r r ra b   U       w θ w,θ w θ w θ w θ                          (15) 

    ( ) ( ), , 1,r rb w θ w,θ                                                                                                   (16) 

  0,M M   0,M M  0.                                                                    (17)(18)(19) 

 

When the optimality conditions are satisfied, L  becomes: 

 

, .L G n V                                                                   (20) 

 

Considering the self-adjoint relationship,    ( ) ( ), ,r r
w θ w θ  obtained by Eq.(14) and Eq.(15) and 

( ) ( )
j jS A

d dAdS





     , the shape gradient density functions, 1 2 0 G ,G , G , are derived in the following 

equations. 

 

 1 1 2 2 0 1

1

, ,
j

N

S
Gn V G G G dS      V n V n V n

j=

                                                            (21) 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 3,3 2,3 3,3 2,3 1 2 3 3 22 ,r r r r r r r r r rG h h Ew w w w                                         (22) 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1 2 3,3 1,3 2 3,3 1,3 3 1 1 32 ,r r r r r r r r r rG h h w Ew w w                                         (23) 

0 .G AH                                                                                                                         (24) 

 

The derived shape gradient function is utilized for obtaining the optimal shape by using the free-

form optimization method for frame structures which will be explained in the next section.  

Free-form optimization method for frame structures 

The free-form optimization method for frame structures was developed by the authors for finding an 
optimal free-form shape of a frame structure (Shimoda, et al, 2013). It is a node-based shape 
optimization method based on the 1H  gradient method, which is a gradient method in a Hilbert 
space, and it can treat all nodes as design variables without shape parameterizations (Azegami and 
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Takeuchi, 2006, Shimoda, 2011). In this study, we applied this method to the natural vibration 
problem. In this method, the negative shape gradient function (= )G  G n is applied as a distributed 
force to a fictious-elastic frame structure in the normal direction to the centroidal axis under a Robin 
boundary condition, i.e., an elastic support condition with a distributed spring constant 0   as 
shown in Fig. 4. The stiffness matrix is used for the positive definite matrix required for a gradient 
method in a Hilbert space, and it also takes the role of a smoother to maintain the mesh regularity 
while reducing the objective functional. The shape variation  1 2 3,V ,V VV  is determined in the 
fictious-elastic frame analysis, which is called velocity analysis, and the obtained V is used to 
update the shape. The governing equation of the velocity analysis for V is expressed as Eq. (25). 
The constraint conditions for velocity analysis are arbitrarily set by considering each individual 
shape design conditions. 
 

 
 

Figure 4. Schematic of the free-form optimization method for frame structures 

 

              , , , · , , , , , , , , ,Θ Θa G C C     V θ w θ V n n w θ n w θ  w θ  V θ          (25) 

     
6

1

1 2 3 1 2 3 satisfy Dirichlet condition for shape variation .ΘC V ,V ,V ,θ ,θ ,θ H S          (26) 

 

In problems where convexity is assured, this gradient method reduces the Lagrange functional in 

the process of updating the frame shape using the design velocity field V determined by Eq. (25). 

The optimal free-form frame structure is obtained by iterating a process consisting of (1) eigenvalue 

analysis, (2) sensitivity analysis for calculating the shape gradient functions, (3) velocity analysis 

and (4) shape updating. The analyses in (1) and (3) are conducted using a general FEM code. 

Calculated design examples 

To verify the effectiveness and validity of the proposing optimization method for the natural 

vibration problems, two design problems are solved by using the developed system based on the 

method. Although the eigenvalue analyses were performed up to the 10
 
th mode, the result graphs 

shows only the modes related to the specified mode, and those modal orders at the initial shape are 

tracked through the plots. 

 

Square frame model 

The first design example is a square frame model having two cross members inside (size: 1000 
×1000). For all members, the cross sections are a square 20 on a side. Each of the circumference 
members and the cross members are meshed into 2 and 20 two-node elements, respectively, for a 
total of 48 elements. For this problem, the 1st eigenvalue is maximized and the design object is the 
cross members. The volume constraint was set as 1.05 times the initial value. Fig. 5(a) shows the 
initial shape and the boundary conditions for eigenvalue analysis and Fig. 5(b) shows the conditions 
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for velocity analysis. The numbers with a triangle in the figures express the single point constraint 
(SPC), and 1, 2, 3 express the 1 2 3, ,X X X  translational degrees of freedom, respectively. Fig. 6(a) 
shows the initial 1st modal shape and Fig. 6(b) shows the obtained optimal shape, in which the 
cross members became smooth arches. The iteration convergence histories of the eigenvalue and the 
volume are shown in Fig. 6(c), where the values were normalized to those of the initial shape. 
Without switching to the higher modes, the eigenvalue was maximized at 1.26 times the value of 
the initial while satisfying the volume constraint. 
 

 

                             
(a)Initial shape and B.C. for eigenvalue analysis            (b) B.C. for velocity analysis 

 

Figure 5. Initial shape and boundary conditions of square frame model 

 

           
(a) 1st natural mode                    (b) Obtained shape                    (c) Convergence histories 

 

Figure 6. Calculated results of square frame model 

 

Portal frame model 

The second design problem is concerned with a portal frame model (size: 3000 × 2800 × 600) as 

shown in Fig. 7(a). The cross sections are a square 10 on a side for the members that compose the 

sine-curved top lattice and a square 20 on a side for the side support members, respectively. All the 

members were meshed with two-node elements at the intersections of square grids, for a total of 

398 elements. For this problem, the 2nd eigenvalue was maximized and the volume constraint was 

set as 1.01 times the initial value. Fig.7(a) shows the initial shape and the boundary conditions for 

eigenvalue analysis and Fig. 7(b) shows the conditions for velocity analysis. Fig. 8(a) shows the 

initial 2nd modal shape and Fig. 8(b) shows the obtained optimal shape, in which two beads were 

created along with the free edges and the side support members became slightly recurved. The 

iteration convergence histories of the eigenvalue and the volume are shown in Fig. 8(c), where the 

values were normalized to those of the initial shape. Without switching to the lower or higher 

modes, the eigenvalue was maximized at 6.40 times the value of the initial while satisfying the 

volume constraint. 
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(a)Initial shape and B.C. for eigenvalue analysis       (b) B.C. for velocity analysis 

 

Figure 7. Initial shape and boundary conditions of portal frame model 

 

           
(a) 2nd natural mode                   (b) Obtained shape                      (c) Convergence histories 

 

Figure 8. Calculated results of portal frame model 

Conclusions 

The free-form optimization method for frame structures was applied to the natural vibration 

problems that aim to maximize a specified eigenvalue. It is a node-based method that does not 

require any shape parameterization and it can efficiently find the smooth optimal shape for large 

scale problems under arbitrary shape design conditions. With the developed optimization system 

based on the proposing method, two design problems were solved and the validity and the 

effectiveness were confirmed. 
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