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Abstract 

In this paper, we present a non-parametric form-finding method for designing the minimal surface, 
or the uniformly tensioned surface of membrane structures with arbitrary specified boundaries. The 
area minimization problems are formulated as distributed-parameter shape optimization problems, 
and solved numerically. The internal volume or the perimeter is added as the constraints according 
to the type of a structure such as pneumatic or suspended membranes. It is assumed that the 
membrane is varied in the out-of-plane and/or the in-plane direction to the surface. The shape 
gradient function for each problem is derived using the material derivative method. The minimal 
surface is numerically determined without the shape parameterization by the free-form optimization 
method, a gradient method in a Hilbert space, where the shape is varied by the traction force in 
proportion to the sensitivity function. The calculated results show the effectiveness of the proposed 
method for finding the optimal form of membrane structures. 
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Introduction 

Membrane structures have many advantages: they contribute to safety and economy, they are 
lightweight and not bulky, and they have good aesthetic aspects due to their curved surface and 
translucency. By taking advantage of these characteristics, various membrane structures have been 
developed and widely used for industrial products such as roofs, yacht sails, balloons and air-bags. 
Membranes must maintain their shapes by mainly in-plane tension due to their negligible bending 
stiffness, which makes it difficult for designers to create the required shapes. In addition, in order to 
maintain the designed shape and to secure sufficient stiffness and strength against self-weight and 
external force, initial tensions must be appropriately applied to membranes. Therefore, form-finding 
is vitally important in the design process.  
Membrane structures are classified into the pneumatic (air-support) membrane type in which 
tensions are generated by differential pressure and the non-pneumatic membrane type to which 
tensions are applied by mechanical force. Non-pneumatic structures are also classified into the 
frame membrane type and the suspension membrane type. Non-pneumatic structures must have 
non-positive Gaussian curvature over the whole surface to maintain the shape. Fig. 1 shows the 
classification of membrane structures. Regardless of the structure type, membranes cannot be 
expected to have much bearing capacity due to their thinness even if they are made of strong 
materials. Therefore, designers need to determine the membrane shape so that there is a uniform 
stress field across the entire surface. 
  
 

 
 
 
 
 
 
 

 
(a) Pneumatic type             (b) Frame type                  (c) Suspension type 

 
Figure 1. Classification of membrane structures 
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It is well known that a shape with a uniform stress field conforms to the minimal surface which has 
zero mean curvature across the surface if the deformation due to the self-weight is negligible. If a 
constraint condition is given, it has a certain amount of curvature. Such a surface with a constant 
curvature is also regarded as the minimal surface under the constraint condition. Physical 
experiments using a soap film or a hanging cloth can easily find minimal surfaces (Otto, 1973). It 
was also mathematically studied as a variational problem and many minimal surface functions were 
found (Gray, 1998). However, it is difficult to find minimal surfaces taking account of complicated 
boundary conditions or mechanical characteristics. In order to solve these disadvantages, many 
versatile numerical solutions have been studied (e.g., Monterde, 2004, Bletzinger et al., 2005, Pan 
and Xu, 2011). The solutions can be classified into node-based and parametric surface-based 
methods, or geometry-based and experiment simulation-based methods. 
The authors also have proposed a numerical solution for finding a minimal surface, i.e., an equally 
tensioned surface, with an arbitrarily specified boundary (Shimoda and Yamane, 2013). This is a 
node-based and geometry-based method. In this paper we introduce the method and present 
application examples by the method. This method finds a minimal surface by formulating the form-
finding problem as a distributed-parameter shape optimization problem, and applying the sensitivity 
function derived by the material derivative method to the proposed method, which was based the 
free-form optimization methods for shells (Shimoda and Tsuji, 2006, Shimoda et al, 2009). The 
advantages of this method include efficiency for treating large-scale problems and the ability to 
obtain a smooth shape without any shape parameterization. With this method, numerical form-
finding can be performed for a pneumatic membrane structure, a frame membrane structure and a 
suspension membrane structure, where the shape could vary in the in-plane direction and/or out-of-
plane direction according to the type of membrane structures to be solved. 
In the following sections, we will first show the formulations of minimal surface problems as 
distributed-parameter optimization problems and derive each sensitivity function, which is called 
the shape gradient function. Then, the free-form optimization method for membrane structures will 
be introduced. Finally, we will show examples of each type of membrane structure. 

Domain variation of membrane structure 

Definition of shape variation for free-form design 

As shown in Fig. 2, consider that a membrane having an initial domain A with the boundary A  is 
varied into one having domain 

sA with the boundary
sA  by the shape variation (the design velocity 

field) V  distributed across the surface. It is assumed that the boundary A  is included in the 
domain A ( A A  ) and that the thickness h is constant during the deformation. The shape variation 
V consists of the out-of-plane variation 

nV  which deforms in the normal direction to the surface and 
the in-plane variation 

tV  which deforms in the tangential direction to the surface. The membrane 
shape is varied by 

nV (A) distributed on A and 
tV ( A ) distributed on A  since 

tV (A) does not affect 
the shape variation except on A . The shape variation is expressed by the piecewise smooth 
mapping : ( ) ,  0S s sT A A s    X X X , where  and ( )s indicate a small integer and the 
iteration history of the shape variation equivalent to time. Using the relations 

( ),   ( )s s s sT A T A X X , the small shape variation around the s-th variation is expressed as 
 

2
( ) ( ) ( ) s s sT T s O s    X X V + ,                                                   (1) 

 
where the design velocity field ( ) ( ) /  sT s  

s
V X X is given as the Euler derivative of the mapping 

( )sT X  , and 
2

( ) O s is assumed to be neglected as a high-order term. The optimal design velocity 
 

 
Figure 2. Shape variation of membrane by V 
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field ( )
s

V X is determined by the free-form optimization method proposed, which will be explained 
later.  

Form-finding problems of membrane structures and derivation of shape gradient function 

In order to find the minimal surface, the area of a membrane is defined as an objective functional. In 

addition to the boundary shape, the internal volume or perimeter is set as another constraint 

condition according to the structure type. In this section, we will formulate a distributed-parameter 

shape optimization problem for each type of membrane structure, so as to determine the design 

velocity field that leads to the minimal surface, and then the shape gradient function will be derived. 

Consider a shape optimization problem for minimizing the area of a frame membrane structure like 
that shown in Fig. 1(b). When an initial membrane shape

0A  and a specified boundary shape formed 
by the frame, which may be an open boundary, are given, this problem is expressed as 
 

0Given    A ,                                                 (2) 
 

find     (or )sAV ,                                            (3) 
 

that  minimizes     (= )
A

A dA .                                                                                     (4) 
 
The Lagrange functional L for this problem is expressed as 
 

( )
A

L A dA  .                                                                (5) 
 
The material derivative (Choi and Kim, 2005) L  of the Lagrange functional L with respect to shape 
variation is expressed as 
 

, , ,A A A AL G G C       n V t V V                                          (6) 
 
where the notations of ,A An G V  and ,A At  G V   are defined as 
 

,A A A A n
A A

G G dA G V dA     n V n  V ,                                           (7) 
 

,A A A A t
A A

G G d G V d    
 

     t V t V ,                                      (8) 
 

,     A AG H                                 (9) 
 

A AG H  ,                                 (10) 
 

where C
 indicates the admissible function space that satisfies the specified geometric boundary 

condition. The coefficient functions 
AG  and 

AG
 are called the shape gradient function and are 

distributed on the surface and on the boundary, respectively. The notation ( )nV  n V  is the normal 
component of V and the vector n is an outward unit normal vector to the surface. ( )tV  t V  is the 
tangential component of V and the vector t is an unit tangential vector to the surface. 

AH  and 
AH

 
indicate twice the mean curvature on the surface A and the curvature on the boundary A .  
If the arbitrary boundary is closed, the second term on the right-hand side in Eq. (6) is omitted. 

Consider a problem for minimizing the area of a pneumatic membrane structure subjected to 
differential pressure, which is shown in Fig. 1(a). Defining a specified boundary as the geometric 
constraint condition and an internal volume   (i.e., a space bounded by the membrane) as the 
equality constraint condition (the constraint value is represented as ̂ ), this problem is expressed 
as 

0Given    A ,                                          (11) 
 

find     (or )sAV ,                                     (12) 
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that  minimizes     (= )
A

A dA ,                                                                      (13) 
 

ˆsubject to     (= ) = d


   .                               (14) 
 
The Lagrange functional L for this problem is expressed as 
 

( , ) ( ˆ
A

L A dA d


      .                                              (15) 
 
The material derivative L  of the Lagrange functional L with respect to shape variation is expressed 
as 
 

ˆ, ( ,A AL G Cd


   
    n V V                                  (16) 

 
.   A AG H                                                                 (17) 

 
When the constraint condition with regard to the internal volume is met, Eq. (16) can be written as 
 

, .A AL G C   n V V                                                         (18) 

Consider the problem for minimizing the area of a suspension membrane structure like that shown 
in Fig. 1(c). Defining specified fixed points on the boundary as the geometric constraint condition 
and a perimeter   of the boundary as the equality constraint condition (the constraint value is 
represented as ̂ ), this problem is expressed as 
 

0Given    A ,                                        (19) 
 

find     (or )sAV ,                                   (20) 
 

that  minimizes     (= )
A

A dA ,                                                                  (21) 
 

ˆsubject to      (= ) = 
A
d  

 .                            (22) 
 
The Lagrange functional L for this problem is represented as 
 

( , ) ( ˆ
A

L A dA d


   


   .                                             (23) 
 
If the constrained perimeter condition is met, the material derivative L  of the Lagrange functional L 
with respect to shape variation is represented as 
 

, , ,A A A AL G G C        n V t V V                                          (24) 
 

,    A AG H                                       (25) 
 

1 .   A AG H                                (26) 
 
The shape gradient functions derived here are used for determining the minimal surface (or the 
optimal design velocity field or the optimal shape variation). We will explain the method in the next 
section. 

Free-form optimization method for form-finding of membranes 

The free-form optimization method for form-finding, i.e., minimal surface of membrane structures, 
were developed by combining the free-form optimization methods for shells with respect to the in-
plane variation (Shimoda and Tuji, 2006) and the out-of-plane variation (Shimoda et al, 2009). The 
free-form optimization method is a node-based shape optimization method based on the traction 
method (Azegami, 1994, Shimoda et al, 1998) which is a gradient method in a Hilbert space, and 
can treat all nodes as design variables without parameterization. 
In order to determine the optimal design velocity field that minimizes the objective functional using 
both the derived shape gradient functions and the gradient method in a Hilbert space, a tensor with 
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positive definitiveness must be introduced. A unit tensor cannot maintain the smoothness of the 
shape since it leads to a jagged shape problem. A stiffness tensor of an elastic shell under the Robin 
boundary condition similar in shape to a membrane is used in this method to make the computation 
simple and linear. This stiffness tensor serves not only to reduce the objective functional, but also to 
maintain the mesh smoothness. The Robin condition is employed to stabilize the convergence. The 
reference shape is updated with the optimal design velocity field V obtained by applying the 
distributed external forces in proportion to the negative shape gradient function to this pseudo-
elastic shell. Consider the design velocity field =1,2,3= { }i iVV  divided between the in-plane 
component 0 0 =1,2= { }V

 V  and the out-of-plane component V3 on the local coordinate systems. 
Using Kirchhoff’s theorem as a plate bending theory, each governing equation of the design 
velocity field is explained as Eq. (27) and Eq. (29), respectively. In the case of the in-plane 
variation, the out-of-plane velocity field needs to be constrained (i.e., 

3 0V ). Therefore, after each 
design field is determined separately, they are synthesized as required with the relation = +n tV V V . 
We call this analysis for V “velocity analysis”. Fig. 3 shows schematics of the velocity analysis for 
(a) out-of-plane shape variation and (b) in-plane shape variation.  
 
 
 
 

 
 
 
 
 
 

 
 (a) Out-of-plane shape variation             (b) In-plane shape variation 
 

Figure 3. Schematics of the free-form optimization method for membranes 
 
 

0 3 0 0 0(( , , ), ( , , )) + ( ) ( ,, , ) ( , , ) ,  A AA
a V w w wn  bV u V n n uG, u     
 

0 3 0 ( , , ) ,   ( , , )V C w C   bV u  ,      (27) 
 

1 2

1 5

0 0 3 1 2, , , ,C V V V H A   {( ) ( ( ))  
0 3( , , )   }V satisfy the constraints of  shape variation on AV  . (28) 

 

0 3 0 0 0(( , , ), ( , , )) + ( ) ( ,, , ) ( , , ) ,   A AA
a w tV w w  b GV u V t t, u u     
 

0 3 0 ( , , ) ,   ( , , )  V C w C   bV u  ,    (29) 
 

1 2

1 5

0 0 3 1 2, , , ,C V V V H A   {( ) ( ( ))  
3 3( , , )  variation on   0   }V satisfy the constraints of  shape S and V on AV0  .   (30) 

 
Here, the bilinear form  ,  a(  ) , which represents virtual work related to internal force, and the 
linear forms  ,  A

,  ,  A
 are expressed as Eq. (31), Eq. (32) and Eq. (33) , respectively. 

( )  expresses the variation. The tensor subscript notation uses Einstein’s summation convention 
and a partial differential notation for the spatial coordinates 

i ix　　 　　( ) ( ) /, . 
 

0 0 0 , 0 ,(( , , ),( , , )) { + }B M

A
a w w c c dA           u u  ,                         (31) 

 

0( , ,, )A
A

A Aw wdAG G  un  ,                                                                     (32) 
 

0 0,( , , ) ( )A A A
A

G dG w u
  


    t u  ,                                                         (33) 

 
where w and 0 0 1,2{ }u a au  represent the out-of-plane displacement and the in-plane displacement 
vector at the mid-plane, respectively. , 1,2{ }     and 0 , 1,2{ }     represent the curvature tensor and 
the strain tensor at the mid-plane, respectively, which are defined as 
 

, ,

1
( ), 

2
αw + wab b ba .                                                       (34) 
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0 0 0

1
( )

2
α,β β,αu +uabe .                            (35) 

 

AH  and 
AH

 in the shape gradient functions are approximately calculated at all points of a finite 
element model by a discrete method proposed by Meyer et al., (2002).  
The fact that the shape variation due to the design velocity field V obtained in the velocity analysis, 
i.e., Eq. (27) and/or Eq. (29) decreases the objective functional was verified in the previous papers 
(Shimoda and Yamane, 2013, Shimoda et al., 2009).  
The minimal surface can be obtained by repeating the three processes: (i) computation of the shape 
gradient function, (ii) velocity analysis and (iii) shape updating. In this study, a general-purpose 
FEM code was used in the velocity analysis. 

Calculated results for three types of membrane structures 

The initial shape of a frame membrane structure is shown in Fig. 4(a). The red lines show the fixed 

frames, or the specified boundaries. In the velocity analysis their boundaries were simply supported. 

The minimal surface obtained is shown in Fig. 4(b), which was determined by the out-of-plane 

variation according to the shape gradient function, i.e., Eq. (9). Fig. 4(c) shows the result of soap-

film experiment by Otto (1973).  

 

 
 (a) Initial                                                   (b) Obtained 

 

 
(c) Soap-film experiment 

 

Figure 4. Optimization result of frame membrane structure 

 

 
Figure 5. Iteration histories for frame membrane structure 



7 

 

 

Fig. 5 shows the iteration convergence histories of the area. The results show that the shape 

obtained is smooth and well-approximated to the soap-film experiment. The area was decreased by 

about 14% and converged steadily. 

The initial shape having internal volume, i.e., the space bounded by the membrane with frames, was 

designed as shown in Fig. 6(a). Under the internal volume constraint condition (i.e., 150% of the 

initial shape), analysis of the minimal surface was conducted. In the velocity analysis, the specified 

boundaries by the frames were simply supported. The minimal shapes were determined by the out-

of-plane variation according to the shape gradient function, i.e., Eq. (17). The internal volume was 

computed by space discretization using tetra elements. Fig. 6(b) shows the minimal surface 

obtained, and Fig. 7 shows the iteration convergence histories of the area and the internal volume. 

The graph shows that the area was increased by about 40%, while satisfying the internal volume 

constraint. 

 

 
(a) Initial                                            (b) Obtained 

(Initial internal volume: V0)             (Constraint volume: V=1.5V0) 

 

         Figure 6. Optimization result of pneumatic membrane structure 

 

 

 
    Figure 7. Iteration histories for pneumatic membrane structure  

As a problem of suspension membrane structures, an area minimization analysis was conducted 

under a perimeter constraint condition. The initial shape of a tarpaulin-like structure, the five 

vertices of which were fixed, is shown in Fig. 8(a). In the velocity analysis, the vertices were simply 

supported. The perimeter constraint was set as 102% of the initial shape. The minimal surface was 

determined by the out-of-plane and in-plane variations according to the shape gradient functions, 

i.e., Eq. (25) and Eq. (26). Fig. 8 (b) shows the minimal surface obtained. The area was minimized 
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and reduced by around 58%, while the perimeter constraint was satisfied. 

 

 
                     (a) Initial                                        (b) Obtained 

 

Figure 8. Optimization result of 5-points spatial suspension membrane structure 

Conclusion 

In this paper, we presented a numerical non-parametric form-finding method for designing the 

minimal surface of a membrane structure. Design problems according to the type of membrane 

structure (i.e., frame, pneumatic and suspension type) are formulated as distributed-parameter shape 

optimization problems, and the shape gradient functions are derived, where the in-plane shape 

variation and/or the out-of-plane shape variation was defined as the variable for form-finding. By 

applying the derived sensitivity function to the gradient method in a Hilbert space, the minimal 

surfaces were determined by iterative computations. With this method, the optimal and smooth free-

form of membranes can be found without any shape parameterization. Design examples were 

illustrated for each type of membrane structure. 
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