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Abstract 

A common problem encountered in the study of frictionless contact is the failure to 

obtain stable and accurate convergence result when the contact node is close to the 

element edge, which is referred as “critical area”. In previous studies, we modified 

the element force equation to apply it to frictionless node-element contact problem 

using the Euler-Bernoulli beam theory (Tsutsui, Obiya and Ijima, 2009). A simple 

single-element consists two edges and a contact point was used to simulate contact 

phenomenon of a plane frame. The modification was proven to be effective by the 

convergability of the unbalanced force at the tip of element edge, which enabled the 

contact node to “pass-through”, resulting in precise results. However, in another 

recent study, we discovered that, if the shear deformation based on Timoshenko beam 

theory is taken into consideration, a basic simply supported beam coordinate afforded 

a much simpler and more efficient technique for avoiding the divergence of the 

unbalanced force in the “critical area”. Using our unique and robust Tangent Stiffness 

Method, the improved equation can be used to overcome any geometrically nonlinear 

analyses, including those involving extremely large displacements. 

1 Introduction 

The various methods and definitions that have been used to study contact problems in 

recent times have contributed numerous and interesting computation procedures. 

Previously studied contact phenomena involving large displacements analyses can be 

classified into four categories, namely contact between surfaces (Aliabadi and Martin, 

2000; Rebel, Park and Felippa, 2002; Ayyad, Barboteu and Fernandez, 2009), contact 

between a node and a surface (Klarbing, 2002), contact between a node and an 

element (Chen, Nakamura, Mori and Hisada, 1998), and contact between elements 

(Konyukhov and Schweizrhof, 2010). 

 

In this study, we developed a simple but effective method for studying the basic 

phenomenon of a node–element contact involving large displacements, and introduce 

a beam element comprising two edges and a contact point. We elaborate on the 

development of the method in Section 3. The idealization of the contact element 

produces a feasible contact phenomenon, which can be realistically computerized. 

This is illustrated by some numerical examples presented in this paper, in which 

accurate equilibrium of all nodes within the structure was achieved and the 

convergence of the unbalanced force was stable during each load increment. 
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To simulate extremely large deformation analyses, we used the tangent stiffness 

method (TSM), which produces very accurate and robust results for geometrically 

nonlinear analyses. Using this method, we formulated a simple but precise contact 

element without additional parameters or any complex derivation of the tangent 

geometrical stiffness and the element stiffness equation. Yet the method better 

satisfied the perfect equilibrium state than a common finite element method (FEM). 

The robustness is specifically shown in Section 4 as the numerical example 4.2 

(Accuracy comparison of FEM to TSM), where a comparison of TSM to the study 

done by Konyukhov and Schweizrhof, 2010 using solid element by FEM. The study 

simulated the analysis of a large-deformation frictionless node–element contact of a 

cantilever beam, densely partitioned into 50 divisions. The comparison showed that 

the creation of such a large number of divisions is not necessary to obtain accurate 

results in TSM. Considering the discontinuity of the element boundary discussed by 

Chen and Nakamura (1998), an equilibrium state can hardly be achieved when the 

number of element increases. Conversely, TSM can be used to achieve stable 

convergence result without any concern with the density of mesh division. 

 

In a node–element contact, it is difficult to achieve equilibrium when the contact node 

approaches the element edge owing to the nonconvergence of the unbalanced force. 

The sliding of the contact point toward element edges may reduce the li or lj in Eqs. 

(5)-(8) to zero. This is due to a “division by zero” of the force equation matrices of 

the element given in Eq. (5), and it leads to the divergence of the unbalanced force. It 

should also be noted that the distance between the edges and the contact node are also 

the denominator of the matrices. To solve this problem, we used a shear deformation 

in Timoshenko beam as a countermeasure, including for slender beams. Furthermore, 

by introducing the shear deformation to the element force equation, the “critical area” 

where the unbalanced force hardly converges can be made significantly less than 

those of the Euler–Bernoulli beam, as shown in several examples. 

 

We also studied the “pass-through” of a contact node using a simple algorithm for the 

inner and outer vector product, which produced stable convergence results, including 

at the tip of the element. In addition, the algorithm for the “pass-through” of the 

contact node to the next element was easier to implement and much more accurate at 

all the edges of the elements. In their work on frictionless node–element contact, 

Nizam, Obiya, and Burhaida (2008) proposed an algorithm that combines a contact 

element with the next noncontact element that the contact node is about to “pass-

through”. The equilibrium state was successfully achieved by this technique, although 

its reliability is low due to the change of mesh configuration, which affects the entire 

scheme. In another study (Tsutsui, Obiya and Ijima, 2009), an element force equation 

based on the cantilever beam coordinate was used to improve the “pass-through”. The 

introduced equation enabled the convergence of the unbalanced force when the 

contact node was relatively close to the edge of the element—a configuration that had 

not been previously achieved. Furthermore, the findings of this study would facilitate 

further studies on node–element contact because its definitions and analytical results 

are precise, reliable, and very robust. 

2 Tangent Stiffness Method 

The TSM was solely idealized to overcome numerical cases exhibiting significant 

nonlinearity. The superiority of this method is that it converges the unbalanced force 

with high accuracy by defining element behavior using a simple form of the element 
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force equation. This theory requires the element edge forces to be treated separately 

and independently of each other. In addition, strict compatibility and an equilibrium 

equation are disseminated in the iteration configuration to converge the unbalanced 

force. This is equivalent to the Newton–Raphson method, which has an extremely 

high convergence performance. 

2.1  General formulation 

Here, an element has two edges and the force vector of both edges is assumed to be S. 

Considering a plane coordinate system, if the external force vector is denoted by U, 

and the equilibrium matrix by J, the equilibrium condition can be expressed by the 

following equation: 

JSU   (1) 

By differentiating Eq. (1), the tangent stiffness equation can be expressed as 

  dKKJSSJU GO    (2) 

Here, the differentiation of Eq. (1) simultaneously extracts S  and J , which enables 

the expression of a linear function of the displacement vector d  in the local 

coordinate system. Meanwhile, KO represents the element stiffness matrix, which also 

simulates the element behavior corresponding to the element stiffness. KG is the 

tangent geometrical stiffness. 

 

Furthermore, a strict tangential stiffness equation can be obtained by a concise 

induction process without the use of a nonlinear stiffness equation. The induction 

process using a Lagrangian finite element is more complicated than the TSM. 

3 Contact Problem 

Figure 1: Element edge forces for contact        Figure 2: Nodal forces for contact 

                 element                                                                element 

A direct approach to frictionless contact between a node and an element using the 

Euler–Bernoulli and Timoshenko beams was developed and is presented in detail in 

this paper. A common equilibrium condition can be expressed for both theories as 

illustrated by means of a contact element in Figs. 1 and 2. 

 

Fig. 1 shows the element edge forces for a single contact element, whereas Fig. 2 

shows the nodal forces. The rotation of the contact node is neglected, which reduces 

the degree of freedom of the node to two. The vectors of the element edge force are 

independent of each other and are defined by the following equation: 

 TYMMN jiS  (3) 

Furthermore, the vector U  can be expressed as follows: 

 T 

ccjjjiii VUZVUZVUU  (4) 
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By differentiating Eqs. (3) and (4), the tangent geometrical stiffness can be obtained 

from the equilibrium between S and U. 

3.1  Euler-Bernoulli beam theory using simply supported coordinate 

Fig. 3 shows the equilibrium condition of an elastic and homogeneous simply 

supported beam under the action of the axial force N, edge moments Mi and Mj, and 

contact force Yc. Using the Euler–Bernoulli beam coordinate, it is assumed that the 

contact force Yc is within the range of the beam, and that it produces the geometric 

and kinematic variables expressed in detail in the figure. This coordinate is a simple 

but accurate idealization of the frictionless node–element contact problem. The 

element force equations of this case are given as Eqs. (5) and (6). 
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Figure 3: Contact problem in simply supported beam coordinate 
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3.2  Euler-Bernoulli beam theory using cantilever coordinate 
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Figure 4: Contact problem in cantilever beam coordinate 
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(7), (8) 

The same Euler–Bernoulli beam is used in a cantilever coordinate system for a node–

element contact. In this case, the existence of two concentrated forces; the contact 

force Yc and the edge shear force act at the beam edge Yj, should be noted. In this 

coordinate, it is more likely to overcome the problem of “critical area” when the 
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distance between the contact node and the element edge is small, compared to the 

previous simply supported coordinate (Nizam, Obiya, and Burhaida (2008)). The 

element force equations (Eqs. (7) and (8)) can be easily used to execute a “pass-

through” of the contact node to the next element. The equation for this coordinate 

system consists of the axial force N, edge moment Mj, contact force Yc, and the edge 

shear force Yj which are independent to each other. 

3.3  Timoshenko Beam Theory using simply supported coordinate 

The fundamental assumption of the Euler–Bernoulli and the Timoshenko beam are 

the plane cross section remains plane. In Timoshenko beam, the cross section rotates 

due to the effect of shear deformation and no longer normal to the neutral axis. 

Furthermore, it is also assumed that the beam deformation is produced by two 

components, namely the bending and shear deformations (Fig. 5). 

 

Figure 5: Effect of shear deformation in a beam 

To simulate a contact phenomenon using the Timoshenko beam, a simply supported 

coordinate system can be used. The figure also reveals the existence of kinematic 

components, which were used in the previous Euler–Bernoulli beam (subsection 3.1).  

 

In this subsection, the element force equation of node-element contact for the 

Timoshenko beam is expressed as Eqs. (9)-(12). These equations are developed to 

overcome the “division by zero” discussed in section 1, to encounter the problem 

when the contact node approaches element edge into the “critical area” and leads to 

the divergence of unbalanced force. Furthermore, owing to the reduction of “critical 

area” enhanced by these equations, “pass-through” could be executed smoothly for 

the contact node to shift to the next noncontact element with stable convergence 

result. The effectiveness of these equations are demonstrated in details in each 

numerical examples in the following section. 
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4 Numerical Examples 

4.1  Frictionless contact analysis of a cantilever beam 

The main objective of this analysis is to investigate the range of the “critical area”, by 

comparing the application of the Timoshenko beam in the element force equation (see 

Eqs. (9)–(12)) to the previous equations developed by Tsutsui, Obiya, and Ijima 

(2009). As shown in Fig. 5, the distances between the contact point and the two edges 

are li and lj, respectively. In this case, if li → 0 or lj → 0 in Eqs. (5) and (7), the 

matrices become singular. Therefore, if li or lj is close to zero, the unbalanced force 

would hardly converge. This implies that there is a particular space close to the 

element edge in which the approach of the contact node is prohibited from achieving 

convergence result. We refer to this space as the “critical area”. 

 

As shown in Fig. 6, a cantilever beam configuration is used in this analysis, and the 

beam consists of 18 elements and 19 nodes. A compulsory displacement in the lateral 

upward direction is applied to the control node, which is independent and 

unconnected to any element in the primary position. The material parameters are E = 

2.1 × 1011 [N/m2], A = 0.005 [m2], I = 0.001 [m4], G = 7.5 × 1010 [N/m2], and υ = 0.4. 

 

Figure 6: Cantilever beam model 
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(a)                                                              (b) 

Figure 7: (a) Beam deformation, (b) Comparison of “critical area” by three 

different element force equations 

 

Fig. 7(a) shows the beam deformation due to the displacement of the control node, 

whereas Fig. 7(b) shows the relationship between the ratio li/l of a contact element 

and the displacement of the control node after contact. In this analysis, the control 

node was set at six primary positions, namely 4.05, 4.1, 4.2, 4.3, 4.35, and 4.4 m in 

the horizontal direction. The results of the analysis showed that the “critical area” of 

the Euler–Bernoulli beam in the simply supported coordinate system of Nizam, Obiya, 

and Burhaida (2008) ranged between 7.749% and 12.952%, whereas that of the 

cantilever coordinate system of Tsutsui, Obiya, and Ijima (2009) ranged between 

2.164% and 3.865%. An idealization of the cantilever coordinate system by 

comparison of the two results can be used to reduce the range of the “critical area”. 

However, using the Timoshenko beam, the “critical area” can be significantly 

reduced from 0.067% to 0.501%. The reduction of the “critical area” makes it easier 
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for the contact node to smoothly “pass-through” the element edge to the next element, 

producing a strict equilibrium solution. 

4.2  Accuracy comparison of FEM to TSM 

In this analysis, we compare the FEM of 

Konyukhov and Schweizrhof (2010) with the 

TSM for contact simulation. A cantilever 

beam with solid elements and 50 divisions 

was used for the FEM study, whereas simple 

linear elements are used for our TSM study. 

To demonstrate the accuracy of TSM, 10, 20, 

and 50 divisions of the beam are used in this 

study. The control node is displaced in the 

upper left direction by the vector [1, 0.6366], 

and the material parameters are E = 2.1 × 104 

[N/m2], b × h = 0.02 × 0.02 [m], L = 1.00 [m], 

G = 7.5 × 1010 [N/m2], and υ = 0.3.     
         Figure 8: Beam deformation 
  

Fig. 8 shows the beam deformation for both methods. The figure reveals that the 

beam deformations for TSM and FEM are not significantly different. The TSM 

solution for the larger 10 and 20 divisions is similar to that of FEM using densely 

partitioned solid elements. Furthermore, a simple definition of the contact element is 

sufficient to simulate the TSM contact analysis, while also avoiding the complex 

settings of the nonlinearity between the strain and the displacement. 

4.3  Contact of double beams 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9(a)-(f): Control node displacement quantity and beams deformation 

Two independent cantilever beams are used in this analysis, and the control node is 

displaced laterally and downward until it exceeds those of the two beams. The 

objective of this analysis is to perform multiple contacts using the Timoshenko beam, 

taking into consideration the “critical area”, the “pass-through” phenomenon, and the 

deformation behavior of both structures. Both beams have 10 equal divisions, and the 

material parameters in this case are E = 2.0 × 107 [N/m2], A = 3.0 × 10-4 [m2], I = 2.2 

× 10-8 [m4], G = 7.142 × 106 [N/m2], and υ = 0.4. 

 

Contact is about to occur when the displacement of the control node is at stage (a). At 
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beam. The control node is displaced until stage (d), at which time the control node is 

about to shift from the upper beam and make contact with an element of the lower 

beam. The analysis is continued until the control node displacement is at stage (f), 

when the node is about to exceed the lower beam. By applying the Timoshenko beam, 

the significant reduction of the “critical area” discussed in Subsection 4.1 enables the 

contact nodes to smoothly and simultaneously “pass-through” every element edge. 

5 Conclusion 

The application of proposed contact element enables feasible node-element contact 

with large displacement. Based on the findings of this study, we make the following 

conclusions: 

1) The convergence of the solution observed in the numerical analyses shows the 

effectiveness of the idealization of applying shear deformation of Timoshenko 

beam. Smooth “pass-through” solves the problem associated with discontinuous 

element boundaries. In addition, the reduction of “critical area” at every element 

edges to 0.067% facilitated the converged solutions. 

2) The proposed contact element shows a very high performance with the usage of 

less element division and adequate if compared to the application of solid element. 

Furthermore, this is a significant merit in order to reduce the cost of calculation 

thus, it is practical to be deal with. 

3) Regarding to the decrement of the range of “critical area”, the provided numerical 

example 4.3 shows multiple contact phenomena could be executed at the same 

time. All of the contact nodes were able to “pass-through” smoothly without any 

divergence of the unbalanced force. 
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