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Abstract 
Vibration of double-walled carbon nanotubes (DWCNTs) are studied by using 
different beam models of continuum mechanics and the molecular dynamics (MD) 
simulations. The models of the double Euler beam (DEB) and the double Timoshenko 
beam (DTB), with the energy of van der Waals interaction between layers taken into 
consideration are applied to predict the natural frequencies of DWCNTs with one 
ends fixed. For the relatively long DWCNTs, the results obtained by the DEB model 
and the DTB model are very close, and the MD simulations show that these two 
models can predict the natural frequencies well. However, for the vibration of the 
relatively short DWCNTs, the difference between the DEB model and the DTB model 
becomes obvious, and the DTB model offers much better predictions than the DEB 
model. 
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1. Introduction 

Carbon nanotubes (CNTs) have attracted lots of researches for their novel electronic 
properties and superior mechanical strength (Ahlskog et al. 2001; Cumings & Zettl 
2000; Postma et al. 2001; Roschier et al. 2001; Rueckes et al. 2000). Experiments and 
MD simulations have been effectively used to study mechanical behavior, including 
vibrational behavior, of CNTs. Treacy et al. (1996) estimated Young’s modulus of 
isolated CNTs by measuring, in the transmission electron microscope, the amplitude 
of their intrinsic thermal vibration. Hsiesh et al. (2006) investigated the intrinsic 
thermal vibration of a CNT using MD simulations.  There are some difficulties 
encountered in experiments study on the mechanical behavior of CNTs, and MD 
simulations remain expensive for large scale systems. Continuum mechanics models, 
including the Euler beam model are widely used in vibration and buckling analyses 
and in sound wave propagation problems (Yoon et al. 2003a; Yoon et al. 2003b). 
Besides, the Timosheko beam model with the rotary inertia and the shear deformation 
taken into account has been used to analyze the vibration and wave propagation of 
short CNTs which may be used widely as nanoelectronic materials (Ahlskog et al. 
2001; Roschier et al. 2001) and AFM tip (Ishikawa et al. 2002; Snow et al. 2002). 
Yoon et al. (2005) studied vibration of short DWCNTs with supported-supported 
boundary condition and they found that the Timoshenko-beam model, rather than the 
Euler-beam model, is relevant for terahertz vibration of short DWCNTs. For more 
boundary conditions, Wang et al. (2006) solved the governing Timoshenko equations 
for DWCNTs by using the differential quadrature method. They show that the 
frequencies are significantly over predicted by the Euler beam theory when the 
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length-to-diameter ratios are small. Wang et al. (2010) studied the thermal vibration 
of single-walled CNTs based on the model of Timoshenko beam, together with the 
law of energy equipartition and MD simulations. Wang & Hu (2012) analyzed the 
difference in natural frequencies predicted by using the DEB model and the MD 
simulation, they found that the difference is obvious for high-order frequencies and 
more accurate models, such as Timoshenko beam model, are needed to predict the 
natural frequencies of a DWCNT. 
 
The primary objective of this study is to derive theoretical solutions of DTB model 
and check the validity of it, in studying the vibration, simulated via the MD 
simulations, of a DWCNT with one end fixed and the other end free. For this purpose, 
Section 2 presents the natural frequency of a model of DTB to be used to model the 
vibration of a DWCNT. Section 3 gives the MD simulation for the free vibration of 
DWCNTs based on the Brenner potential and Lennard-Jones pair potential. Section 4 
outlines a comparison, which is verified by using results of MD simulations in 
Section 3, between the DTB model and DEB model. Finally, the paper ends with 
Section 5 with some conclusions. 

2. Double-Timoshenko-beams model 

y
x

 
(a) 

 
(b) 

Figure 1. Models for DWCNT (a) Continuum mechanics model (b) Molecular 
structure model 

This section starts with the dynamic equation of a DTB of infinite length and uniform 
cross section placed along direction x  in the frame of coordinates ( , , )x y z , the 
dynamic equations of the inner and outer tubes for a DWCNT are (Huang 1961; Ru 
2000) 
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where ( , )kw x t  (k=1, 2) is the displacement of section x  of the kth tube in direction 
y  at the moment t,  kϕ  is the slope of the deflection curve of the kth tube when the 
shearing force is neglected, kA  is the cross section area of the kth tube, 2dk k

I y A= ∫  

is the moment of inertia for the cross section of the kth tube, β  is the form factor of 
shear depending on the shape of the cross section, and β =0.5 holds for the circular 
tube of the thin wall (Timoshenko et al. 1972). jkC  is the coefficient of the van der 
Waals (vdW) interaction for the interaction pressure per unit axial length and 
estimated based on an effective interaction width (He et al. 2005). kE , kρ , kG  are 
Young’s modulus, mass density and shear modulus of the kth tube respectively. The 
boundary conditions of a cantilever beam are 

 
2 2

2 2

( , ) ( , )(0, ) 0, (0, ) 0, 0, 0k k
k k

w L t L tw t t
x x

ϕϕ ∂ ∂
= = = =

∂ ∂
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Both nested tubes with the same boundary conditions have the same vibrational 
modes, ˆˆ ( ), ( )w x xϕ . The dynamic deflection and slope can be given by 
 ˆ ( ) j t

k k nw a w x e w= , ˆ ( ) j t
k k na x e ωjj = , (3) 

where ŵ  represents the deflection amplitude of the beam, ϕ̂  the slope amplitude 
of the beam due to bending deformation alone, and 1j ≡ − . Let 
  /x Lx = . (4) 
Substituting Equation (3), (4) into Equation (1), one obtains 
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The solutions ˆˆ ,n nw ϕ of Equation(7) reads 

  1 1 2 1 3 2 4 2ˆ cosh sinh cos sinnw C C C Cα ξ α ξ α ξ α ξ= + + + , (8a) 
  1 1 2 1 3 2 4 2ˆ sinh cosh sin cosn C C C Cϕ α ξ α ξ α ξ α ξ′ ′ ′ ′= + + + , (8b) 
where 
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And 2 4B C B+ >  is assumed. 

In the case of 2 4B C B+ < , then Equation (7) should be replaced by (Huang 1961) 
  1 1 2 1 3 2 4 2ˆ cos sin cos sinnw C jC C Cα ξ α ξ α ξ α ξ′ ′= + + + , (10a) 
  1 1 2 1 3 2 4 2ˆ sin cos sin cosn jC C C Cj α ξ α ξ α ξ α ξ′ ′ ′ ′ ′ ′= + + + , (10b) 
where 1 1jα α′= . 
In Equations (8) and (10), only one half of the constants are independent since they 
are related by Equations (5) as following 
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The natural frequency ω  of the cantilever Timoshenko beam can be determined 
from the determinant of the follow matrix 
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Solving Equation (12) and (13), one can obtain the natural frequency of the double 
Timoshenko beam with one end fixed. 

3. Molecular dynamics model 
The MD simulations are carried out using Brenner’s second generation reactive 
empirical bond order (REBO) potential (Brenner et al. 2002) which has been widely 
used in a great number of studies on the mechanical behavior of carbon materials. In 
the REBO potential, the chemical binding energy bE  can be simply written as a sum 
over nearest neighbors in the form 
 b

(> )
= [ ( )- ( )]R A

ij ij ij
i j i

E V r b V r∑∑ , (14) 

where ijr  is the distance between pairs of nearest-neighbour atoms i and j, ijb  is a 
many-body empirical bond-order function. The functions ( )R

ijV r  and ( )A
ijV r  are 

interatomic repulsion and attraction terms, which represent bonding from valence 
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electrons, respectively. 
 
The long range vdW interaction is calculated by Lennard-Jones 12-6 potential, given 
by  

 
12 6

4E
r r
σ σε

    = −    
     

, (15) 

with well-depth energy of -22=4.7483 10 Jε ×  and equilibrium distance of 
=0.34nmσ .  

 
The atoms in the red region shown in Figure 1(b) are fixed in order to simulate the 
cantilever boundary condition. The DWCNT is allowed vibrating freely for 62 10×  
steps with time step 1fs at a room temperature (300K) using Nose-Hoover thermostat 
(Hoover 1985; Nose 1984a; Nose 1984b; Nose 1991) after the system is fully relaxed 
for 2ns. The coordinates histories in y direction of one random of the free atoms are 
recorded for certain duration, and the natural frequencies are computed by using the 
fast Fourier transform (FFT) method. The frequencies of a (9, 0)/(18, 0) zigzag 
DWCNT with 7.614nm length  are shown in Figure 2, in which every peak 
represents one natural frequency of the DWCNT. It shows that although the diameters 
of the inner and outer tubes are different, the atoms oscillate in the same frequencies 
due to the effect of vdW force between these two tubes. 
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Figure 2. Magnitude-frequency curves of atoms on inner tube and outer tube 

with the same 7.614nm length  

4. Results and Discussions 
To predict the free vibration of a DWCNT, it is necessary to know Young’s modulus E 
and the shear modulus G or Poisson’s ratio µ . The previous studies based on the 
REBO potential gave a great variety of Young’s modulus and Poisson’s ratio of 
single-walled CNTs. For our calculations, the inner and outer tubes of DWCNT is 
assumed to have the same geometrical and material parameters where E=0.87TPa and 

=0.41µ  are given by MD tensile method introduced in (Liu & Wang 2012) when the 
thickness of the wall was chosen as 0.34nm.  
 
Vibration of (5, 5)/(10, 10) DWCNTs and (9, 0)/(18, 0) DWCNTs with one end fixed 
are simulated by MD method. Figure 3 and Figure 4 show the first-order natural 
frequencies of these two kinds of DWCNTs with different lengths calculated by MD 
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and beam models. From Figure 3 and Figure 4, it can be found that the DTB model 
and DEB model which is introduced by Yoon et al.(2003b) give very similar 
frequencies if the aspect ratio /L d  is about bigger than 8. However, the difference 
between these two beam models becomes obvious along with the aspect ratio getting 
small, and the DEB model gives the higher frequencies. From the comparison with 
results of MD simulations, the DTB beam model offers much better predictions than 
the DEB beam model. It suggests rotary inertia and shear deformation are significant 
for the vibration of short DWCNTs. And the DTB model is relevant for vibration of 
short DWCNTs. 
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Figure 3. (9, 0)/(18, 0) DWCNT frequencies calculated by beam models and MD  
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Figure 4. (5, 5)/(10, 10) DWCNT frequencies calculated by beam models and MD  

 
High-order frequencies can be obtained according to the magnitude-frequency curves 
as shown in Figure 2. Note that some peaks response frequencies of the longitudinal 
vibration not the transverse vibration of the DWCNT. And frequencies responded by 
these peaks should be ignored in the statistical process. Figure 5 shows the first ten 
frequencies of (5, 5)/(10, 10) DWCNTs in different lengths. One can see that the 
natural frequencies predicted by the DTB model are better than those based on the 
DEB model, especially when the DWCNT getting very short. That’s because the 
shorter of the DWCNT, the greater the impacts of rotary inertia and shear 
deformation on the free vibration of DWCNT. However, the differences in natural 
frequencies, mainly high-order frequencies, predicted by DTB model and the MD 
simulation still looks obvious. More accurate models, such as shell model, may give a 
better prediction for the natural frequencies of such a DWCNT. 
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Figure 5. The first ten natural frequencies of (5, 5)/(10, 10) DWCNTs in different 
lengths 

5. Conclusions 
Free vibration of cantilever DWCNTs is studied using MD simulation and a DTB 
model which considers vdW force between the inner and outer tubes and treats the 
inner and outer tubes as two individual Timoshenko beams. A theoretical solution of 
cantilever DTB model has been obtained to predict the resonant frequency of 
DWCNTs with one end fixed. A comparison for the first-order frequencies between 
DTB model and DEB model shows that for the relatively long DWCNTs, the results 
obtained by the DTB model and the DEB model are very close, and the MD 
simulations show that both of these two models can predict the natural frequencies 
well. However, for the vibration of the relatively short DWCNTs, the difference 
between the DTB model and the DEB model becomes obvious, and the DTB model 
offers much better predictions than the DEB model. For high-order frequencies of 
DWCNTs, DTB model gives much better predictions than DEB model, especially 
when the length of DWCNTs is very short. 
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