
APCOM & ISCM  

11-14
th

 December, 2013, Singapore 

 

1 

 

Vibration of Thin Beams by PIM and RPIM methods 

*B. Kanber¹, and O. M. Tufik
1
 

1
Mechanical Engineering Department, University of Gaziantep, Turkey. 

*Corresponding author: kanber@gantep.edu.tr 

Abstract 

In this study, vibration of thin beams are analyzed by using point interpolation (PIM) and radial 
point interpolation (RPIM) methods with standard Gaussian integration and a nodal integration 
based on the Taylor series expansion. The effects of integration schemes, support domain sizes and 
RPIM shape parameters on the vibration modes are investigated. A cantilever beam problem is 
solved by linear elastic materials with uniform cross-section. The results are compared with finite 
element and available analytical solutions. 
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Introduction 

The PIM (Liu and Gu, 2001a) and RPIM (Wang and Liu, 2002a, 2002b) are meshfree techniques 
that are used in the solution of wide range of engineering problems. In addition to these 
applications, their local versions are used to analyze the vibration of thin beams and 2-D solids (Liu 
and Gu, 2001b; Gu and Liu, 2000). 
In this study, PIM and RPIM solutions of vibration of thin beams are carried out using the standard 
Gauss integration scheme and a nodal integration scheme based on Taylor Series expansion. The 
effect of support domain sizes and shape parameters of RPIM are investigated on the natural 
frequencies and free vibration modes. 
 
Free Vibrations of Thin Beams 
The Lagrangian can be written as follows (Chandrupatla and Belegundu, 1999): 
                                                                                                                                               (1) 
where   is the kinetic energy and   is the potential energy of the beam. Using Eq. (1), Hamilton’s 
principle can be expressed as: 

                                                                          
  

  
                                                                     (2) 

Then, for the free vibration, the equation of motion can be obtained using Eq. 2 as follows:  

                                                                                                                                           (3) 

where   is the global displacement vector,   is the global mass matrix and   is the global stiffness 
matrix. For the steady state condition, starting from equilibrium state, we set: 

                                                                                                                                              (4) 

where   is the vector of nodal amplitudes of vibration and   is the circular frequency. Introducing 
Eq. (4) into Eq. (3), we have: 
                                                                                                                                            (5) 

where   corresponds to the eigenvalue,     .   

 

The global mass and stiffness matrixes can be obtained assembling their nodal values as in the 

FEM. Their nodal values are, 
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where   is the modulus of elasticity,   is the second moment of area,   is the material density and A 
is the cross-sectional area of the beam. They are assumed constant through an integration cell.    
and    are the limits of an integration cell.   is the shape function vector that can be replaced with 
either PIM or RPIM shape functions. They are calculated in terms of real coordinates. So, they must 
be transformed to natural coordinates of -1 and 1 for Gauss integration scheme. It is not required to 
transform the limits to the natural limits when the nodal integration scheme is used. 
 
 
Point Interpolation Method (PIM) 

In the thin beam theory, there are two degrees of freedom at each node: deflection and slope. 

Therefore,      at the point of interest    is approximated by    terms as presented by Liu (2010): 

 
                                                          

  
                                                                       (8) 

 

where       is the basis function defined in the Cartesian coordinate,   is the coefficient for the 

basis function, n is the number of nodes in a local support domain. 

When, the polynomial basis function is used as a basis function Eq. (8) can be written as: 

 

                                                       
                                                          (9) 

 

where       is the basis function of monomials, a is the coefficient of basis function      . 
A polynomial basis in one dimension is: 

 

                                                                                                                             (10) 

 

At node i, we have equation in matrix form as: 

 

                                                                                                                                          (11)   

 

where generalized displacement vector    : 

 

                                                                     
                                                       (12) 

 

and    is the moment matrix. For 1D case, it is given by: 

 

                                                                       
                                                       (13) 

 

If the inverse of moment matrix exists, using Eq. (11), we have: 

                                                          
                                                                                    (14)  

Finally, the Eq. (9) becomes: 

 

                                                         
      

                                                 (15) 

 

where PIM shape function     
 

                                    
                                                                              (16) 
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Radial Point Interpolation Method (RPIM) 

 

Radial basis functions are used in PIM to create shape functions. The field variable is approximated 

using a radial basis function by considering deflection and slope at each node. Thus, equation Eq. 

(8) becomes: 

 

                                             
  
                                                                    (17) 

 

where a is the unknown constants vector for the radial basis function,   is the radial basis function 

with distance r between points x and xi. For 1D case, r can be written as: 

 

                                                                                                                                              (18) 

 

As a vector form,  : 

 

             
        

        
          

                                            (19) 

 

In this study, multiquadric radial basis function (MQ RBF)     
         

     is used to 

construct shape functions. In general form of MQ RBF, it has two shape parameters,    and q, 

which control the shape of functions and their range of values are proposed by Wang and Liu 

(2002).    is the nodal spacing in whole problem domain. If the nodes are uniformly distributed, it 

is equal to the distance between two nodes. Else, it is equal to the average nodal spacing. These 

parameters can be altered to increase the solution accuracy for different type of problems.  

 

The coefficients    in Eq. (17) can be determined by letting Eq. (17) be satisfied at all the n support 

nodes as given by Liu (2010). After interpolation at kth point, we have: 

 

                                                                         
                                               (20) 

 

The equation above can be written in matrix form as: 

 

                                                                                                                                              (21) 

 

where     is the generalized displacement vector, and    is the moment matrix of RBFs: 

 

                                             

 
 
 
 
      

       
        

    

      
       

        
    

    
      

       
        

     
 
 
 
                                        (22) 

 

It is the invertible moment matrix and vector of coefficients a can be calculated as: 

 

                                                               
                                                                               (23) 

 

Substituting Eq.  (23) into Eq. (17): 

 

                                                                  
                                                                 (24)  
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where RPIM shape functions      are: 

                         

                                            
                                                                      (25) 

 

Integration Schemes 

 

Gauss Integration Scheme 

 

To evaluate Eqs. (6) and (7), two different integration schemes are used. The first one is standard 

Gauss integration. In this method, quadrature cells (background cells) are used to integration. The 

shape functions are calculated for each node in the support domain. 

 

Two sampling points are used to calculate flexural nodal stiffness matrix and one sampling point is 

used for shear nodal stiffness matrix calculation. Thus, 

 

                                                              
 
            

 
                                      (26) 

                                                                
                                                                  (27) 

 

where     is the Jacobian matrix,  ,   ,    are weights,  ,   ,    are quadrature points. 

 

Nodal Integration Scheme 

 

Second integration scheme is the nodal integration proposed by Liu et al. (2007). In this method, 

nodal stiffness matrices are introduced by Taylor’s expansion. The whole solution domain is 

divided into non-overlapping cells around each field node (Fig. 1). Thus, the nodal stiffness 

matrices can be expressed as: 
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Figure.1 Nodal integration scheme 
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Solutions and Discussions 

A cantilever beam of uniform rectangular cross section (0.1x0.01 m
2
) is used to test the developed 

programs as shown in Fig. 2. Structural steel is used with a Young’s modulus of 200 GPa and 

density of 7840 kg/m
3
. 1 kN end load is applied. 100 two-node finite elements are used in the FEM 

solutions. 11 regular distributed nodes are used in the PIM and RPIM solutions. The codes are 

developed in Matlab and the function “eig” is used to find eigenvalues and eigenvectors. All 

methods are in excellent agreements with analytical and finite element solutions as shown in Fig. 3 

for the vertical deflection of the cantilever beam. 

 

 

 

 

 

Figure 2.Cantilever beam and its PIM and RPIM models. 

 

 

 
 

Figure 3.Vertical deflections of the cantilever beam uder 1kN end load (ds=3L/2 for PIM and 

RPIM, q=1, αc=3 for RPIM). 

 

First four modes of vibration of cantilever beam are given in Fig. 4. In these solutions, support 

domain size is used as 3L/10 for PIM and RPIM.  q and αc are used as 1 and 3 respectively for the 

RPIM. In the first mode, all methods are in good agreements with the FEM solution. However,  

when the mode number is increased, PIM and RPIM with nodal integration and RPIM with Gauss 

integration give more stiff results than others.  
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Figure 4. First four free vibration modes of the cantilever beam (ds=3L/10 for PIM and 

RPIM, q=1, αc=3 for RPIM). 

 

The PIM and RPIM values of frequencies are compared with FEM and exact solutions in Table 1-4 

for standard Gauss and nodal integration schemes, for different support domain sizes and shape 

parameters. Increasing the support domain size (sd) up to 5L/10 slightly change the PIM 

frequencies when the standard Gauss integration scheme is used as shown in Table 1. However, 

when sd becomes equal to 5L/10, frequencies suddenly drops. When the nodal integration scheme 

(based on Taylor series expansion) is used, the PIM frequencies in the first mode are slightly 

improved, but the frequencies in the higher modes get worse. Similar results are also obtained for 

RPIM frequencies as shown in the Table 2. The best results are obtained when the support domain 

size is equal to L/10 with Gauss and nodal integration schemes. The change of αc and q values does 

not significantly change the frequencies as shown in the Table 3 and 4. Although q causes singular 

moment matrix problem when it is equal to 1 (Liu and Gu, 2005), it does not cause a singularity 

problem in this study.     

 

 

Table 1. PIM frequencies of the cantilever beam for various support domain (sd) sizes. 

Mode 

PIM with Gauss integration (11 nodes) 

sd 

PIM with Nodal integration (11 nodes) 

sd 
FEM 

(100 

elements) 

Exact 

(Ferreira,  

2009) L/10 2L/10 3L/10 4L/10 5L/10 L/10 2L/10 3L/10 4L/10 5L/10 

1 3.516 3.516 3.503 3.042 1.117 3.490 3.497 3.501 3.500 3.448 3.516 3.516 

2 22.035 22.026 21.870 18.502 12.096 20.183 21.000 22.273 21.623 20.471 22.034 22.035 

3 61.707 61.646 60.855 50.439 38.793 38.448 5.560 39.697 57.500 66.965 61.697 - 

4 120.966 120.719 117.678 97.908 87.656 45.109 39.276 53.846 39.200 39.713 120.902 - 

 

Table 2. RPIM frequencies of the cantilever beam for various support domain (sd) sizes (αc=3, 

q=1). 

Mode 

RPIM with Gauss integration  (11 nodes) 

sd 

RPIM with Nodal integration  (11 nodes) 

sd 
FEM 

(100 

elements) 

Exact 

(Ferreira,  

2009) L/10 2L/10 3L/10 4L/10 5L/10 L/10 2L/10 3L/10 4L/10 5L/10 

1 3.515 3.512 3.486 2.809 0.944 3.523 3.505 3.502  3.499  3.425   3.516 3.516 

2 22.035 21.953 21.626 17.505 13.887 20.471 20.724 22.311 21.097 20.424  22.034 22.035 

3 61.656 61.398 59.818 47.277 26.530 39.107 39.353 39.906 39.399 39.614  61.697 - 

4 120.598 120.193 114.035 86.843 59.762 45.679 46.415 53.915 45.782 45.786  120.902 - 
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Table 3. RPIM frequencies of the cantilever beam for various αc (sd=3L/10, q=1). 

Mode 

RPIM with Gauss integration  (11 nodes) 

αc 

RPIM with Nodal integration  (11 nodes) 

αc 
FEM 

(100 

elements) 

Exact 

(Ferreira,  

2009) 1 3 5 7 9 1 3 5 7 9 

1 3.327    3.486 3.493 3.496   3.498   3.490 3.502 3.502  3.501  3.502  3.516 3.516 

2 20.218   21.626 21.703 21.732  21.781  20.792 22.311 22.262 22.107 20.662 22.034 22.035 

3 55.492   59.818 60.124 60.224  60.288  66.177 39.906 39.757 39.825 62.947 61.697 - 

4 105.393 114.035 114.851 115.089 114.934 40.274 53.915 53.779 54.213 40.348 120.902 - 

 

Table 4. RPIM frequencies of the cantilever beam for various q (sd=3L/10, αc=3). 

Mode 

RPIM with Gauss integration  (11 nodes) 

q 

RPIM with Nodal integration  (11 nodes) 

q 
FEM 

(100 

elements) 

Exact 

(Ferreira,  

2009) 0.5 0.7 0.98 1 1.3 0.5 0.7 0.98 1 1.3 

1 3.497 3.494 3.486 3.486 3.475 3.502 3.502 3.502 3.502 3.495 3.516 3.516 

2 21.739 21.706 21.634 21.626 21.574 22.190 22.274 22.310 22.311 21.071 22.034 22.035 

3 60.273 60.141 59.847 59.818 59.522 39.766 39.769 39.823 39.906 61.715 61.697 - 

4 115.278 114.909 114.111 114.035 113.123 53.820 53.728 53.766 53.915 41.293 120.902 - 

 

Conclusions 

All methods are in excellent agreements for the deflection solutions. In the first mode of free 

vibration of the cantilever beam, all methods are again in good agreements. However, in the higher 

modes, PIM and RPIM with nodal integration and RPIM with Gauss integration give stiffer results 

than FEM, analytical results and PIM with Gauss integration. Increasing support domain size 

generally improve the results. However, when the node numbers in the support domain becomes 

greater than 10, the beam starts to behave more rigid. The change of αc and q values does not 

significantly change the frequencies.   
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