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Abstract 

In this study, the point interpolation method (PIM) and radial point interpolation method (RPIM) 

solutions of elasto-plastic thick beams are compared by using standard Gaussian integration and a 

nodal integration based on Taylor series expansion. The effects of integration schemes, support 

domain sizes and RPIM shape parameters on the solution convergence are also investigated after 

yield point. The global weak form is used to obtain nodal stiffness matrixes. A simply supported 

beam with constant strength is solved by considering an elasto-plastic hardening material. Its results 

are compared with finite element solutions in ANSYS.   
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Introduction 

Beams are mechanical components that are widely used in engineering design. One of the main 

techniques to analyze beams is the finite element method (FEM) (Owen and Hinton, 1980). Elasto-

plastic beams are also analyzed using the finite element method (FEM) (Chebl and Neale, 1984; 

Lee and McClure, 2005). 

Point interpolation method (PIM) is a simple and useful mesh-free technique and originally 

proposed by Liu and Gu (2001a). In the PIM, the field variables are interpolated using point 

interpolation shape functions. The main problem in the PIM is the singularity of the moment matrix. 

The radial point interpolation method (RPIM) is proposed to overcome this problem and based on 

combining polynomial and radial basis functions (Wang and Liu, 2002a, b; Liu et al., 2005). It 

becomes a popular technique in the meshfree solution of wide range of problems. It is used in the 

vibration analysis of 2D solids, shells and beams (Liu and Gu, 2001; Zhao et al., 2009a; Bui et al., 

2012), solution of Kirchoff and Mindlin plates (Dinis et al., 2008; Liu et al., 2006; Liew and Chen, 

2004; Djeukou and Estorff, 2009), analysis of shell problems (Liu et al., 2006; Zhao et al., 2009b), 

geometric nonlinear analysis of plates and cylindrical shells (Zhao, 2008), contact analysis of solids 

(Li et al., 2007), functionally graded materials (Dai et al.,2004) and incompressible flow (Wu and 

Liu, 2003). 

In this study, PIM and RPIM are used to determine the effect of support domain size, RPIM shape 

parameters and integration schemes on the solution accuracy of elasto-plastic thick beam solutions. 

 

Elasto-Plastic Thick Beams 

 

Under a distributed load intensity q, the beam undergoes a set of virtual lateral displacements   , 

virtual normal rotations     and associated virtual curvatures –             and virtual shear 

strains   . Then the global weak form can be expressed as (Owen and Hinton, 1980): 
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where t is depth and b is breadth of the beam. Eq. (1) can be expressed as: 
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where    is the global flexural and    is the global shear stiffness matrices.   is the global force 

vector. Global matrices and vectors can be obtained by assembling their nodal values. In a field 

node, the nodal stiffness matrices and nodal force vector can be expressed as follows:  
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where    and     are integration borders of an integration domain. In a local support domain (Liu, 

2002), if   is considered as number of nodes, the lateral displacement    and slope    at a node can 

be defined in terms of shape functions as follows: 
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Using the curvature-displacement relationship,    can be expressed as: 
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and    is the shear strain-displacement matrix 
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and EI is the flexural rigidity and GA is the shear rigidity,   is the nodal shape function that can be 

constructed using either PIM or RPIM methods. 

Bending moments and shear forces on each support domain can be expressed as (Owen and Hinton, 

1980): 
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where    and    are slopes on the local nodes, l is integration domain length. Shear force varies 

linearly over support domain, if we evaluate it on the mid-point of domain and assume that it is 

constant over the domain: 
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The value of the ultimate moment, in plastic condition can be expressed in terms of yield stress    

as: 
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where         
     for a rectangular beam. After yielding, flexural rigidity    becomes elasto-

plastic flexural rigidity: 
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where strain-hardening parameter is             . 

 

Point Interpolation Method (PIM)  

Consider a function      defined in domain  , which is represented by field nodes. The      at the 

point of interest    is approximated in the form as presented by Liu (2010): 
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where       is the basis function defined in the Cartesian coordinate,    is the coefficient for the 

basis function, n is the number of nodes in a local support domain. 

When, the polynomial basis function is used as a basis function Eq. (11) can be written as: 
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where       is the basis function of monomials, a is the coefficient of basis function       
A polynomial basis in one dimension is: 
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At node i, we have equation in matrix form as: 
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where generalized displacement vector     
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and    is the moment matrix for 1D case is given by 
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If the inverse of moment matrix exists, using Eq. (16), we have: 
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Finally, the Eq. (12) becomes: 
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where PIM shape function     
 

                                    
                                                                              (19) 
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Radial Point Interpolation Method (RPIM)  

The field variable is approximated using a radial basis function. Thus, equation Eq. (11) becomes: 
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where a is the unknown constants vector for the radial basis function,   is the radial basis function 

with       . Although   is used itself without powers in the original RPIM, it can be used in 

the following form to increase its accuracy: 
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In this study, multiquadric radial basis function (MQ RBF)     
         

     is used to 

construct shape functions. In general form of MQ RBF, it has two shape parameters,    and q, 

which control the shape of functions and their range of values are proposed by Wang and Liu 

(2002).    is the nodal spacing in whole problem domain.  

 

   is the moment matrix of RBFs and can be written as follows: 
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It has an inverse, so vector of coefficients a can be calculated as: 
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Substituting Eq.  (23) into Eq. (20): 
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RPIM shape functions      are      

                                            
                                                                      (25) 

 

Integration Schemes 

 

Gauss Integration Scheme 

To evaluate Eq. (3), two different integration schemes are used. In Gauss integration method, 

quadrature cells are used to integration. Two sampling points are used to calculate flexural nodal 

stiffness matrix and one sampling point is used for shear nodal stiffness matrix calculation. Thus, 
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where Jac is the Jacobian, w, w1, w2 are weights, q, q1, q2 are quadrature points and    and     are 

presented in Eq. (5), Eq. (6) respectively. 
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Figure.1 Nodal integration scheme. 

 

4.2 Nodal Integration Scheme 

Second integration scheme is the nodal integration proposed by Liu et al. (2007). In this method, 

nodal stiffness matrices are introduced by Taylor’s expansion. The whole solution domain is 

divided into non-overlapping cells around each field node as shown in Fig. 1. Thus, the nodal 

stiffness matrices can be expressed as:  
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Solutions and Discussions 

The programs used in this study are developed in Matlab. A constant strength simply supported 

beam is used to test the developed programs with an elasto-plastic material of E=200 GPa,    

       and          (Fig. 2). A uniformly distributed load of 110 kN/m is applied with ten 

different increments. In order to compare solution times of methods, a model with 501 regular 

distributed nodes is developed and solved. All solutions are carried out using a PC with 2.5 GHz 

CPU and 4 GByte RAM.  Although, it is reported that the computational cost of RPIM is higher 

than PIM and FEM (Liu, 2002), in this study, it is determined that when standard Gauss integration 

scheme and non-polynomial augmented RPIM are used, there is no significant difference between 

them in solution times as shown in Table 1. However, when Nodal integration scheme is used, the 

solution time is nearly reduced 33%. The elastic displacement distributions are all good agreements 

for all methods as shown in Fig. 3. The support domain size has no a significant effect on the results 

of PIM and RPIM as shown in Fig. 4-7. Similarly, αc has no an important effect in RPIM solutions 

(Fig. 8 and 9). However, q only gives acceptable results when its value approaches to 1 as shown in 

Fig. 10 and 11. 

 

 

 

 

 

 

 

 

Figure 2.Constant strenght simply supported beam and its PIM and RPIM models. 
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Table 1. Solution times of Matlab programs for the constant strenght simply supported beam  

(with 501 regular distributed nodes) 

Support 

Domain Size 

Solution times (in Secs) 

RPIM_Gauss RPIM_Nodal PIM_Gauss PIM_Nodal FEM 

L/10 30.03 20.44 29.96 20.05 

29.36 

2L/10 30.36 20.61 30.29 20.64 

3L/10 30.41 20.97 30.33 20.98 

4L/10 30.43 21.18 30.38 21.07 

5L/10 30.44 21.52 30.40 21.43 

 

 

 
 

Figure 3. Displacement distribution of constant strength simply supported beam along the 

neutral axis at the last load increment (w=100 kN/m, sd=L/10 q=1, αc=3).   

 

 

 
Figure 4. Convergency of the PIM solution 

of constant strength simply supported 

beam after yield point for various support 

domain sizes with q=1, αc=3 and Gauss 

integration scheme. 

 
Figure 5. Convergency of the PIM solution 

of constant strength simply supported 

beam after yield point for various support 

domain sizes with q=1, αc=3 and Nodal 

integration scheme. 
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Figure 6. Convergency of the RPIM 

solution of constant strength simply 

supported beam after yield point for 

various support domain sizes with q=1, 

αc=3 and Gauss integration scheme. 
 

 
Figure 7. Convergency of the RPIM 

solution of constant strength simply 

supported beam after yield point for 

various support domain sizes with q=1, 

αc=3 and Nodal integration scheme. 

 Figure 8. Convergency of the RPIM 

solution of constant strength simply 

supported beam after yield point for 

various αc with support domain size sd=0.3, 

q=1 and Gauss integration scheme.  

 

 Figure 9. Convergency of the RPIM 

solution of constant strength simply 

supported beam after yield point for 

various αc with support domain size sd=0.3, 

q=1 and Nodal integration scheme. 

 

 Figure 10. Convergency of the RPIM 

solution of constant strength simply 

supported beam after yield point for 

various q with support domain size sd=0.3, 

αc =3 and Gauss integration scheme. 

 

 Figure 11. Convergency of the RPIM 

solution of constant strength simply 

supported beam after yield point for 

various q with support domain size sd=0.3, 

αc =3 and Nodal integration scheme. 
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Conclusions 

Although in many studies, it is reported that the computational cost of RPIM is higher than FEM 

and PIM (Liu, 2002), it is shown that solution times of elasto-plastic thick beams are nearly equal to 

each other’s for PIM, RPIM and FEM when standard Gauss integration scheme and non-polynomial 

augmented RPIM are used. However, when the nodal integration scheme based on Taylor’s series 

expansion is used, the solution times of PIM and RPIM are reduced 33%. The support domain size 

and αc do not have a significant effect on the results of all methods. However, q seriously affects the 

results. It does not give any singular solution when it is equal to 1 and gives best results when it is 

equal to either 1 or nearly equal to 1.  
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