A Convolution Quadrature Boundary Element Analysis of

Elastic Wave Interaction with a Crack

*T. Saitoh¹, T. Maruyama², A. Furukawa² and S. Hirose²

¹Division of Environmental Engineering Science, Gunma University, 1-5-1, Tenjin, Kiryu, Gunma, 376-8515, Japan ²Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

*Corresponding author: t-saitoh@gunma-u.ac.jp

This paper presents a convolution quadrature boundary element method (CQ-BEM) for transient analysis of elastic wave scattering by a crack. The proposed time-domain boundary element formulation is based on the implicit Runge-Kutta convolution quadrature method (IRK-CQM). The IRK-CQM is applied to the time-discretization of boundary integral equations. The proposed method has the following advantages: 1) high precision solutions are obtained if we use small time increments which are not allowed in the conventional time-domain BEM, and 2) only scatterer surfaces need to be meshed. In this research, the scattering problems of an incident plane wave by a crack in an isotropic material are solved to verify the accuracy and computational efficiency of the proposed method. In addition, simulation of non-linear ultrasonic waves is demonstrated to validate the effectiveness of the proposed method for elastic wave scattering problems.

Keywords: Time-domain boundary element method, Convolution quadrature method, Elastic wave scattering, Crack