Large-Scale Linear Dynamic Analysis Based on Domain Decomposition Method

Using Local Schur Complement and Inverse of Coarse Matrix

* Hiroshi Kawai1¹, Masao Ogino², Ryuji Shioya³, and Shinobu Yoshimura⁴

¹ Department of Mechanical Systems Engineering, Tokyo University of Science-Suwa, 5000-1 Toyohira, Chino-city, Nagano, Japan. ²Nagoya University, Japan ³ Toyo University, Japan ⁴ The University of Tokyo, Japan

*Corresponding author: kawai@rs.tus.ac.jp

In this work, performance tuning approaches of a structural analysis code based on the hierarchical domain decomposition method (HDDM) for peta-scale massively parallel supercomputers are presented. First, a new subdomain local FE solver, DS-LSC, using explicit evaluation of local Schur complement, is introduced. Next, the coarse grid correction step in BDD pre-conditioner is accelerated by the explicit evaluation of the inverse of the coarse matrix. These approaches are effective for a linear dynamic analysis, where a linear equation with the constant coefficient matrix has to be solved repeatedly. As a preliminary benchmark result, more than 20 % of peak FP performance is obtained on RIKEN K Computer using 20000 nodes. The implementation will be introduced to the future version of open-source CAE system, ADVENTURE.

Keywords: Parallel Processing, Supercomputing, Domain Decomposition Method, BDD, Local

Schur Complement, Coarse Grid Correction