Large-scale Multi-Phase-Field Simulation of Austenite-to-Ferrite

Transformation in Fe-C Alloy using GPU-cluster Computer

*Masashi Okamoto¹, Akinori Yamanaka², Takashi Shimokawabe³, and Takayuki Aoki³

¹Department of Mechanical Systems Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.

²Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.

³Global Scientific Information and Computing Center, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan.

*Corresponding author: 50010255023@st.tuat.ac.jp

Recently, the multi-phase-field method has attracted much attention as the most promising technique for numerical modelling of microstructure evolution in polycrystalline metal. The multi-phase-field method has already been applied to computer simulation of microstructure evolution during solidification, recrystallization and phase transformation. However, in order to perform three-dimensional (3D) simulation, very high computational cost is required. Therefore, acceleration of the multi-phase-field simulation using a single GPU has been developed by the authors. In this study, we established very high-speed and efficient computing technique for 3D multi-phase-field simulation of austenite-to-ferrite transformation in Fe-C alloy by using multiple GPUs. Furthermore, we implemented this technique on a GPU-cluster computer to perform large-scale simulation.

Keywords: Multi-Phase-Field Method, GPU Computing, Austenite-to-Ferrite Transformation, Fe-

C Alloy, Large-scale Simulation