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Abstract
Within the cytoplasm of a cell, there is a complex network of protein fibers that help maintain
the cell’s shape, secure some cells in specific positions, and allow cytoplasm and vesicles to
move within the cell. These protein fibers enable cells within multicellular organisms to move.
Collectively, this skeleton-like complex network of protein fibers is known as the Cellular
Cytoskeleton in biology. There are many structural model hypotheses that scholars have
proposed. However, there were constrained to the efforts of abstraction and conception to
identify the mechanical behavior of the Cytoskeleton structure. Understanding the mechanical
behavior of the Cytoskeleton is highly important to learn the important function of biological
processes in a cell to heal humans from diseases by developing the appropriate medicines to
cure the broken/infected cell. Moreover, many viruses’ structures can be observed and
identified from the cellular mechanical point of view. Sophisticated treatment methods to
tame the viruses’ activities could be discovered in the near future.
There are three types of filamentous proteins: filamentous actin (F-actin), intermediate
filaments, and microtubules. The dynamic mechanism of a cellular cytoskeleton is essential
for its role as a cell, and its accurate characterization has been a long-standing problem for
cell scientists. A cytoskeleton’s vibrations are highly influenced by interactions of
filamentous proteins mediated by axial vibration of the stiff microtubules (compressive
member) and lateral vibration of F-actin (tensile member). Among various structures in a cell,
the cytoplasmic contractile bundles, Lamellipodia, and filipodia cells can be modeled by a
symmetrical cylinder-shape self-equilibrium Tensegrity with different radii at the top and
bottom of the cylinder. The truncated cone-like cylinder model is made to be small in height
compared to the radii.
The tensegrity self-vibrational behavior of the Cytoskeleton is investigated to calculate the
Cytoskeleton’s natural frequencies, which are composed of the individual vibration of
microtubules and F-actins experimental data. The Spectral Element Method based on the
Wittrick-Williams procedure is adopted to solve the vibrational of the cellular Cytoskeleton.
Various n-polygon cylindrical truncated cone-shaped skeletons to mimic the cytoskeletons are
presented to demonstrate the robustness of the present study.
Keywords: Cell Mechanic, Tensegrity Structure, Vibration, Cytoskeleton, Spectral Element
Method



Introduction

Cells that makeup living organisms are exposed to various mechanical stimuli. In
multicellular organisms, a network of cells forms a tissue. A system of tissues forms an organ
[3,6,10,25]. Mechanical stimulation is involved in the background of cell morphology,
motility, proliferation, and segregation and plays an important role in cell development and
homeostasis. Inside a cell, there are organelles. Among the organelles, a cytoskeleton is a
membrane that encloses the other organelles. The cellular cytoskeleton determines the cell’s
shape and triggers cell movement and form changes [1, 5, 19, 31-32, 35]. When receiving an
external force, stress is generated in the intracellular cytoskeleton and cell adhesive apparatus.
It has become clear that proteins constituting the cytoskeleton and cell adhesive apparatus,
such as actin filaments (actin filaments), perceive mechanical stimuli. The actin scaffold
undergoes mechanical stimulation in the cytoskeleton and is rapidly remodeled [47]. The role
of this structure in mechanical response and its molecular mechanism has attracted attention
[10,22,33,42,50-51]. Intermediate filaments have also been suggested to be involved in
converting mechanical stimuli into chemical signals. However, although intermediate
filaments are thought to play an important role in converting mechanical stimuli into chemical
signals, the molecular mechanism remains unclear [1,8,14,21,34,44-45].
In recent years, there has been an idea that the structure of a cytoskeleton is in the form of a
tensegrity structure [26-30]. Although tensegrity was originally used in the self-equilibrium
concept in the field of structural mechanics, its structure is believed to be applied to the shape
of a cell. The cytoskeleton comprises actin filaments, intermediate filaments, and
microtubules, forming a three-dimensional filamentous structure inside the cell [11,23].
Microtubules in the cytoskeleton are rigid, and actin and intermediate filaments are elastic,
indicating a specific composition of a tensegrity structure.
A tensegrity structure is a statically indeterminate structure composed of continuous cables,
tensile members, and discontinuous struts, compressive members, composite structures [12-
13,46]. Pins join these members, and the structure is in a self-equilibrium state without being
supported. Many research results on tensegrity have been published in mechanics and
architecture [15,38]. Various methods have been proposed in architecture for tensegrity
structures’ morphogenesis and their vibration characteristics [16,18,38-41,48].
In this study, as an initial attempt, we imitate the vibrational behaviors of a cytoskeleton by
using a twisted and truncated n-plex cylindrical tensegrity structure. Fig. 1 illustrates the
tensegrity model used to mimic the cytoskeleton structure. Sensitivity analyses are conducted
to investigate the parameters that rule the vibrational behaviors of the cytoskeleton. In a real
application, the parameters can be calibrated by using a result obtained from measurements of
the real cytoskeleton.



Figure 1. A twisted cylindrical tensegrity model to mimic a cytoskeleton structure

Formulation of Tensegrity in Vibration

Fig. 2 shows a strut and a cable, two basic types of Tensegrity members. The compressive
member strut and tensile member cable represent the microtubule and actin filament,
respectively. The vibration of the strut is modeled as an axially vibrating microtubule of a
cytoskeleton. At the same time, the cable’s vibration is modeled to be a laterally vibrating
actin filament of a cytoskeleton. The microtubule is presumed to have an axial rigidity
represented by prestress force, P, and Young’s modulus of elasticity, E. In contrast, the actin
filament is presumed to have only an axial rigidity represented by prestress force, P.

Figure 2. Vibrational models of strut and cable members

The equations of vibrational motion [2] are given as follows:

  0
0

strut

cable

Au EA P u for strut
Av P v for cable





  

 


 (1)

where, ( , )u x t and ( , )v x t are the axial and lateral displacements which are the function of
position and time, respectively. The dot and prime superscripts denote the derivatives with
respect to time t and spatial coordinate x, respectively.
The internal forces and boundary conditions are given as,
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where    , , ,N x t Q x t are the axial and shear forces defined by,
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Spectral Element Formulation

Analysis was performed using the Spectral Element Method (SEM) [1-2], a combination of
the Finite Element Method (FEM), the Dynamic Stiffness Method (DSM), and the Spectral
Analysis Method (SAM). The vibration of a tensegrity structure varies with the individual
vibrational frequency and the wavelength of the members.
The FEM is a famous computational method used in many fields of engineering and science.
However, it is difficult for the conventional FEM to analyze a structure such as a tensegrity



with no supporting boundaries, no external force, and a self-equilibrium state of the members.
The DSM uses an exact dynamic stiffness matrix and implicitly considers the mass in the
stiffness equation. The SAM uses the Fast Fourier Transform and has the property that the
error converges exponentially if the solution is a smooth function (“exponential
convergence”), converging much faster than the FEM. In spectral analysis, the dominant
differential equation can be solved by infinitely adding waves with different frequencies and
the time history of the solution that can be obtained from the Inverse Fourier Transform in the
frequency-domain spectral components.
Fig. 3 depicts the concept of SEM as a combination of FEM, SAM, and SAM techniques in
computing the vibration of Tensegrity structures.

Figure 3. Spectral Element Method (SEM) Outline

Governing equations in the frequency domain

Assume the dynamic response of the Tensegrity in generalized coordinate  ,w x t , whereas in
the spectral form given by,
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where   mi t
mW x e  is the generalized spectral components of the  ,u x t or  ,v x t , M is the

sampling number, and m is the thm natural frequency.

In spectral forms, the generalized boundary forces  1F t and  2F t , the generalized boundary
displacements  1w t and  2w t are also assumed to be as follows,
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Spectral nodal Degree of Freedom (DOF) and Forces

The spectral nodal generalized displacements  ,W U V and forces  ,F N Q are depicted in Fig.
4. Detail derivation of formulas can be found in [2]. Only relevant formulas are presented in
the following.

Figure 4. Spectral nodal of generalized DOFs and Forces

The spectral nodal DOFs vector is given by
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and the spectral nodal forces vector is given by
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Dynamic shape function

The solution of (4) can be given by,
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where, the two wavenumbers can be determined by,
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The dynamic shape function can be obtained from,

   ;W x x N a (11)

where  ;x N is given by,

            2 1 1 2 1 2

2 1

1 1; ; i k L k x i k L k x ik x ik x
S ik L ik Lx x e e e e

e e
        

 
     
 

N e H (12
)

The spectral nodal DOFs vector of (7) can be formulated by substitution of (11) into (12),



which gives,
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Weak form of governing equation

The spectral element equation of Tensegrity structures can be given as,
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The derivation of the dynamic shape function (12) can be written as,
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The Wittrick-Williams procedure is adopted to solve the natural vibrations of the cellular
cytoskeleton based on the dynamic Tensegrity formulations above.

Vibrational characteristic of Tensegrity

Analysis was performed using the Spectral Element Method (SEM), which is a combination
of the Finite Element Method (FEM), the Dynamic Stiffness Method (DSM), and the Spectral
Analysis Method (SAM).

Natural Vibrations of components of Tensegrity

The vibration of a tensegrity structure is highly determined by the combination of vibrations
of its components (cables and struts) behaviors. Physical data of each cytoskeleton component
is obtained from the following literature.

 Length: Actin [3-6] = 3~20 μm (60 nm, unit length); Microtubule [4-6] = 10 μm

Diameter: Actin [3-6] = 7~10 nm; Microtubule [3-6] = 25 nm



Density: Actin [7] = 1.38~1.40 gram/cm3; Microtubule [8] = 1.41 gram/cm3

 Elastic modulus: Microtubule [8] = ~ 1 GPa

The tensions per unit length are obtained from the self-equilibrium equation in [1]. Table 1
shows the physical properties of 9-plex cytoskeleton components based on the literature.

Table 1. Physical properties of 9-plex cytoskeleton components

Component Microtubule
(diagonal strut)

Actin-filament
(top and bottom

cables)

Actin-
filament
(diagonal
cable)

Length (nm) 1912.8 500.0 1711.1
Diameter (nm) 25 7 7
Density (µg/nm3) 1.41e-15 1.38e-15 1.38e-15
Elastic Modulus (Pa) 3.0e-5 - -
Tension per unit length
(aN/nm) -2.736e-6 4.0e-8 2.736e-6

Figure 5 shows the model of a 9-plex cytoskeleton tensegrity structure and the results of
natural frequencies that satisfy (14), as can be seen as drops in the logarithmic values of the
determinant of dynamic stiffness. The first drop is called the structure’s first mode of natural
frequency.

Figure 5. Vibration of a 9-plex cytoskeleton tensegrity structure (1st mode: 21.963 Hz)

Figure 6 shows natural frequency graphs of each component of the 9-plex cytoskeleton
tensegrity structure.

Top/bottom actin filament
(9.704 Hz) Microtubule (22.196 Hz) Diagonal actin filament (43.381

Hz)
Figure 6. The first five modes vibration of struts and cables in a 9-plex tensegrity cell



Height variation

The variation of heights of the cytoskeleton structure is investigated in this section. Table 2
shows the height variation configurations of the tensegrity structures with their physical
properties, which are required to compute the natural frequencies of the structures.

Table 2. Physical properties of 9-plex tensegrities

Height (nm) 1193.2
(0.2H0)

894.94
(0.6H0)

1193.2
(0.8H0)

1491.6
(1.0H0)

Length (nm)
Microtubule 1234.1 1495.0 1690.5 1912.8
Actin top&bottom 500.0
Actin diagonal 890.0 1226.4 1458.4 1711.1

Diameter (nm)
Microtubule 25
Actin 7

Density3) (µg/nm3) Microtubule 1.41e-15
Actin 1.38e-15

Elastic Modulus6)
(Pa)

Microtubule 3.0e-5
Tensile Coefficient
(aN/nm)

Actin top (as
reference) 4.0e-6

Figures 7-9 show the model of a 9-plex cytoskeleton tensegrity structure with height
variations of 0.8H, 0.6H, and 0.2H, respectively. The first mode of natural frequencies of the
various height cytoskeleton tensegrity structures that satisfy (14) can be seen at the first drops
in the logarithmic values of the determinant of dynamic stiffness.

Figure 7. Vibration of a 9-plex tensegrity cell (0.8H = 25.000 Hz)



Figure 8. Vibration of a 9-plex tensegrity cell (0.6H = 27.399 Hz)

Figure 9. Vibration of a 9-plex tensegrity cell (0.2H = 30.240 Hz)

n-plex variation

This section investigates the variation of 0.2H height of n-plex cytoskeleton twisted
cylindrical tensegrity structures. Table 3 shows the physical properties of 9, 12, and 15-plex
cytoskeleton tensegrity structures, respectively.

Table 3. Physical properties of n-plex tensegrities
n-Plex 9 12 15
Height (nm) 20.24 (1.4% H0)

Length (nm)
Microtubule 1847.3 1950.2 2482.7
Actin top&bottom 500&1000
Actin diagonal 1396.7 2394.8 2927.2

Diameter (nm) Microtubule 25
Actin 7

Density3) (µg/nm3) Microtubule 1.41e-15
Actin 1.38e-15

Elastic Modulus6)
(Pa) Microtubule 3.0e+9

Tensile Coefficient
(aN/nm) Actin top (as reference) 4.0e-6

Figures 10-12 show the model of an n-plex cytoskeleton tensegrity structure with 0.2H of
height. The first mode of natural frequencies of the n-plex cytoskeleton tensegrity structures
that satisfy (14) can be seen at the first drops in the logarithmic values of the determinant of
dynamic stiffness.



Figure 10. Vibration of a truncated 9-plex conic tensegrity cell (f1 = 68.61 Hz)

Figure 11. Vibration of a truncated 12-plex conic tensegrity cell (f1 = 50.61 Hz)

Figure 12. Vibration of a truncated 15-plex conic tensegrity cell (f1 = 35.49 Hz)

Summary and conclusion

In Figs. 5-6, we can observe that the cellular 9-plex tensegrity has the 1st mode natural
frequency, which is close to the 1st mode natural frequency of its strut (Microtubule) because
the actin filaments are assumed to vibrate in their lateral direction. In contrast, the
microtubule is assumed to vibrate in its axial direction, controlling the vibrational behaviors
of the tensegrity.



The height of 9-plex tensegrity is varied by 0.8, 0.6, and 0.2 times the height H. Figs. 7-9
show that the 1st mode of their natural frequency was increasing by reducing the height.
Fixing the height of the 9-plex tensegrity with the 0.2H height, the 1st modes of the 12- and
15-plex tensegrity show the reduction of natural frequency since they become stiffer than the
9-plex tensegrity.
By using tensegrity, we obtained physical properties to reproduce the fluctuations of cells. In
the future, we will investigate the significance of fluctuations in the cellular structure
composed of actin filaments and microtubules subjected to traction force by observing them
under different temperatures and mechanical conditions and by approximating the shape of
actual cells. Also, this time, we reproduced the cell shape using a cylindrical model, but since
the actual cell has a complicated shape, it is necessary to use random numbers and precise
modeling of the cytoskeleton structure for verification. Further elucidation of the molecular
mechanism of cytoskeletal control by mechanical stimulation received by cells is expected by
developing techniques that can measure the force and shape of the cytoskeleton.
All the cells that make up our body receive mechanical stimuli and maintain homeostasis
through appropriate haptic responses. Its failure is expected to be the cause of many diseases.
By advancing the elucidation of the process by which cells receive mechanical stimuli and
transform them into chemical signals, many discoveries have been made about problems that
could not be explained only by chemical signals. It is expected that it will be useful in
investigating mechanical cell behaviors.
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