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Abstract 

The flow and heat transfer characteristics of a three-dimensional cavity filled with a 
conducting fluid are investigated in this study. The three-dimensional Navier-Stokes 
equations and energy equation are solved directly using our self-developed algorithm, SCM-
ACM, which combines the spectral collocation method (SCM) with high-precision and 
exponential convergence, and the artificial compression method (ACM) with easy 
implementation and good numerical stability. In this paper, we examine the effects of 
Hartmann numbers (Ha) ranging from 0 to 100, magnetic field directions, and Grashof 
numbers (Gr) ranging from 1×104 to 1×106 on the structure of the flow and temperature fields, 
with a Prandtl number (Pr) of 0.71. The results show the Grashof and Hartmann number have 
a significant impact on the flow and temperature structure in the middle of the cube, but little 
effect on that near the walls. As the Grashof number increases, a stable thermal stratification 
is formed at the center of the cube, and thermal boundary layers are formed near the 
horizontal walls. The increase in Grashof number enhances the heat transfer rate and increases 
the temperature difference between the upper hot fluid and the lower cold fluid in the cube. 
Furthermore, the increase in Grashof number enhances the convective intensity between the 
isothermal walls, leading to the formation of more vortices, which move towards the corners 
due to the combined action of centrifugal force and inertia. The Hartmann number has a 
stabilizing effect on the flow and weakens the heat transfer, while at higher Grashof numbers, 
the magnetic effect becomes more notable. When Ha>50, the magnetic effect is no longer 
significant. The magnetic field parallel to the temperature gradient (BX) is more effective in 
suppressing heat transfer than the magnetic field perpendicular to the temperature gradient 
(BY). The methods and conclusions have certain theoretical guidance for the design and 
optimization of relevant engineering fields. 

Keywords: Spectral collocation method, artificial compression method, 
magnetohydrodynamics, three-dimensional natural convection  

Introduction 

Natural convection flow is one of the important phenomenon in fluid mechanics, which has 
been widely observed in natural systems and engineering applications[1]–[4]. The control of 

the flow direction and heat transfer rate of conducting fluids by an externally applied 
magnetic field has attracted significant attention in the fields of thermodynamics and fluid 
mechanics. Consequently, magnetohydrodynamics (MHD) has experienced substantial 
development and application in the past decade[5], [6]. In this study, a three-dimensional 

cavity filled with a conductive fluid is investigated to examine the effects of the applied 
magnetic field intensity, Grashof number, and magnetic field orientation on the heat transfer 
rate and flow structure. 



Natural convection heat transfer inside an enclosure is a fundamental heat transfer 
mechanism[7]. The heat boundary conditions, fluid properties, and intensity and directions of 

the magnetic field all have significant effects on the flow structure. The initial research 
focused on two-dimensional models. Bondareva et al. [8] studied the natural convective phase 

transformation process of solid pure potassium in a cavity with an internal heat source under 
the action of an inclined magnetic field. They concluded that the average Nusselt number 
(Nuavg) increased with the tilt angle of the magnetic field and decreased with the Hartmann 
number. Saleh et al. [9] used the finite difference method to study the heat transfer in a 

rotating cavity under a magnetic field. They analyzed the effects of the strength and directions 
of the magnetic field and the rotation speed of the square cavity on heat transfer. Rudraiah et 
al. [10] found that when the magnetic field was relatively strong, the fluid in most areas of the 
shell almost stagnated. Sivasankaran et al. [11] used the finite volume method to study the 

influence of temperature-related characteristics of water near the density extremum on fluid 
flow and heat transfer under a uniform magnetic field. They found that the heat transfer rate 
increased with the increase of Rayleigh number (Ra) and decreased with the increase of 
Hartmann number. 
 
In recent years, some scholars have conducted research on natural convection of 
magnetohydrodynamics in a three-dimensional cavity, benefiting from the optimization of 
numerical methods and the improvement of computational power. Sajjadi et al. [12], [13] 

studied the effects of Rayleigh number and magnetic field strength on heat transfer using the 
lattice Boltzmann method. They found that increasing the Rayleigh number enhances the heat 
transfer rate, while increasing the Hartmann number had the opposite effect. Later，Zhou et 

al. [14] used the same method to investigated the flow dynamics and mixed heat transfer of an 

Al2O3/water nanofluid in a cubic cavity. Their results showed that the Richardson number (Ri) 
has a significant impact on both the flow and temperature fields. Ellahi et al. [15] studied the 

heat transfer in a cavity with a pair of adiabatic horizontal and spanwise walls. They 
concluded that the Nusselt number (Nu) increases with the Rayleigh number. Zikanov et al. 
[16] investigated the effects of the magnetic field orientation on natural convection heat 

transfer using the finite volume method. Their results showed that the magnetic field parallel 
to the temperature gradient could maximally suppress heat transfer. Bouchta et al. [17] studied 

the heat transfer behavior of a particle-fluid mixture in a cavity with adiabatic horizontal and 
spanwise walls using the finite volume method and analyzed the relative positions of hot and 
cold walls on heat transfer. Okada et al. [18], [19] investigated the effects of different 

magnetic field directions and strengths using experimental and numerical simulation methods. 
They found that the magnetic field parallel to the temperature gradient could suppress the heat 
transfer rate by a factor of 10 compared to the horizontal magnetic field perpendicular to the 
temperature gradient. 
 
Currently, most studies on MHD flow utilize finite element method, finite difference method, 
or lattice Boltzmann method. Traditional spatial discretization schemes require high spatial 
and temporal accuracy to directly solve the governing equations of natural convection in 
MHD, leading to significantly increased computational costs especially with lager Grashof 
number. The SCM exhibits exponential convergence and high accuracy. Therefore, 
employing this method for spatial discretization can achieve higher accuracy while 
computational costs can be greatly reduced. Additionally, the ACM possesses advantages 
such as numerical stability and easy convergence. Hence, in this study, we directly solve the 
MHD natural convection equations using the SCM-ACM. Regarding the research scope, 



numerous studies assume that the horizontal and spanwise walls of the cavity are adiabatic. 
However, achieving such ideal thermal boundary conditions in experiments and practical 
engineering applications is challenging. Considering the numerical solutions as theoretical 
guidance for real-world engineering applications, we introduce a cubic cavity with one pair of 
isothermal walls, while the remaining four walls are conductive. We conducted a detailed 
investigation on the effect of magnetic field intensity, Grashof numbers, and magnetic field 
directions on the three-dimensional flow and heat transfer.  

2. Mathematical Description 

In this work, the natural convection flow characteristics of MHD are analyzed in a three-
dimensional cavity. As shown in Fig. 1, the cavity with edge length L (L=1) is filled with 
viscous, incompressible, and electrically conductive fluid. The vertical walls (X=0 and X=L) 
are maintained at constant temperatures of Th and Tc (Th>Tc), respectively, while the other four 
walls are assumed to be perfectly conductive. The magnetic field is applied parallel to the 
coordinate axes, such as the magnetic field BX in the X direction. 

 

Fig. 1. The geometric model for the natural convection. 

Since the Hartmann number (0-100) is not very large and the magnetic Reynolds number 
Rem<<1, the induce magnetic field can be ignored. The ACM method adds /p t  , / t u and 

/T t   to the continuity, momentum, and energy equations, respectively. When the solution 
time is long enough, the steady-state results can be obtained [20]. ACM is widely used due to 

its simplicity and ease of convergence when solving incompressible or weakly compressible 
flow equations [21]–[24]. 
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where р, u, ρ, v, T, α and t are the pressure, velocity vector, density, kinematic viscosity, 
temperature, thermal diffusivity and the pseudo time, respectively. c is the artificial 
compressibility parameter. For all the cases in this paper, c=1.5 [25]. J is the current density, 
J =ε(u×B), where ε and B are the conductivity and magnetic field.  

 
In order to make the obtained results universal, each variable is dimensionless through Eq. (4). 
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where x, y and z are the Cartesian coordinates. X, Y and Z are the dimensionless Cartesian 
coordinates, respectively. U, V and W are the dimensionless velocities in X-, Y- and Z-

directions. L and U0 are the reference length and the reference velocity. P is the dimensionless 
pressure. θ and Tr are the dimensionless temperature and reference temperature. The ACM 
equations for three-dimensional natural convection in dimensionless form are as follows. 
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where Re is the Reynold number, 0 ,
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= . Pr is the Prandtl number, Pr=v/α. Fx, Fy and Fz 

are the source terms in X-, Y- and Z-directions. Taking the magnetic field along the Y direction 
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dynamic viscosity.  
 
All walls are assumed to be non-slip. The two vertical walls located at X=0 and X=1 are 
assumed to be isothermal. 
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Both horizontal and spanwise walls conduct heat. 
 0  1 0  1| | 1Y Z X = == = −， ，  (11) 

The rate of heat transfer is characterized by the local Nusselt number ( localNu ) and the average 

Nusselt number, which can be obtained based on the temperature field. 
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3. Numerical method 

3.1 Spectral collocation method 

Spectral methods are widely used to solve problems related to flow, heat, and mass transfer 
due to their high accuracy and exponential convergence [26]–[29]. In this paper, Chebyshev-

Gauss-Lobatto (CGL) collocation point pairs are chosen to discretize equations (5)-(9) 
spatially. Here, the X direction is considered for illustration. The first step involves selecting 
the configuration points. The location ri of CGL collocation point N can be determined as 
follows. 
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where ir  is the location of CGL collocation point  in X coordinate. N  is the CGL collocation 

points in X coordinate. 
 
The second step is to transform the computational domain. Eq. (15) is used to convert the 
actual physical interval ( )   min max: X X XE ，  into a standard spectral interval   : ( ) 1, 1r  −E  . 

The spatial partial derivatives after the transformation are as follows. 
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Thirdly, the spatial partial derivatives are replaced by truncated series. The general variable 

( )r  can be approximated on collocation points by truncated series as: 
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where ( )jh r  is the Lagrange interpolation polynomial, and the expression is given as follows. 
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where ( )'
NT r  is the first-order derivative of the Chebyshev polynomial ( )NT r . 
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So, the expressions of the first-order and second-order derivatives at r=r0 are as follows. 
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where ( )1
h  and ( )2

h  are the first-order and second-order derivatives of ( )h r . 
( )1

D  and 
( )2

D  

are the first-order and second-order coefficient matrices corresponding to the CGL collocation 
points. The elements of coefficient matrices are shown as follows. 
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Therefore, the dimensionless governing equations (5)-(9) can be discretized in space as 
follows. 
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where A, B and C are the first-order coefficient matrix 
( )1

D
 for configuration points xN , yN , 

and zN  corresponding to directions X-, Y-, and Z-directions, while E, F and M are the 

second-order coefficient matrices ( )2
D  for configuration points corresponding to directions X-, 

Y-, and Z-directions. 
 
The explicit fourth-order Runge-Kutta scheme is adopted in this paper for the discretization of 
the time term [20], [25], which is known for its excellent performance in solving 

incompressible fluid flows. 
 
To ensure obtaining the steady-state results using ACM, it is necessary to solve for a 
sufficiently long time to make the unsteady term tend to 0. The calculation can be stopped 
when the maximum residuals of all variables at two adjacent time steps satisfy Eq. (29), 
where   is the tolerance and is set as  = t ×10-4. 
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3.2 Grid independence test 

We employ four sets of grid nodes as 22×22×22, 32×32×32, 42×42×42, and 52×52×52, to 
investigate grid test. For the selected case (HaY=10, Gr=1×105, and Pr=0.71), after attaining 
convergence of the iterative results, we compare the average Nusselt numbers on the cold wall 
under different grid schemes. As depicted in Fig. 2, a significant variation in the average 
Nusselt numbers is observed when the number of nodes increases from 223 to 423. However, 
the average Nusselt number only changes by 0.055% when the number of nodes increases 
from 423 to 523. Taking the computational efficiency and accuracy into account, we select the 
423-node configuration for spatial discretization. 

 
Fig. 2 The average Nusselt number on the cold wall at different number of nodes. 

3.3 Code validation 

The code validation is divided into two parts. First, the natural convection is verified without 
considering the magnetic field. We set the same thermal boundary conditions as those by 
Fusegi et al. [30], Tric et al. [31], Saitoh et al. [32], and Luo et al. [33]. Table 1 shows the 

calculated average Nusselt number of the hot wall, and our results exhibit good agreement 
with the existing results. 



Table 1 The average Nusselt number on the hot wall of natural convection in a three-

dimensional cavity with different Ra for Pr=0.71. 

Ra Fusegi et al.  Tric et al.  Saitoh et al.  Luo et al.  Present results 
104 2.100 2.054 2.0624 2.057 2.0582 
105 4.361 4.337 4.3665 4.337 4.3423 
106 8.770 8.641 8.6973 8.648 8.6547 
Next, we compare our results with those by Singh et al. [34] with the magnetic field condition, 
and Fig. 2 shows excellent agreement between our results and those in the literature. 

 
Fig. 3. The distribution of velocity (U) alone the line (0.5, Y, 0.5) for Ha=50 and 100. 

4. Results and discussion 

In this study, the SCM-ACM numerical method is employed to solve the natural convection 
of MHD in a three-dimensional cavity with two isothermal walls and the remaining four walls 
being linear temperature distribution. The effects of Grashof numbers, magnetic field intensity 
and directions on flow and heat transfer are comprehensively analyzed through the 
examination of streamlines, isotherms and heat transfer rates.  

4.1 Effects of Grashof number on natural convection 

We firstly analyze the three-dimensional temperature isosurfaces. Fig. 4 shows that 
temperature isosurfaces gradually become curved with the increase of Grashof number. When 
Gr=1×106, the isothermal surfaces become approximately parallel to the horizontal walls near 

the center of the cubic cavity, with little change near the vertical walls. 
 
Then, the flow field and temperature field on the plane Z=0.5, Y=0.5 and X=0.5 are analyzed. 
Fig. 5 shows the isotherms on the main circulation surface (Z=0.5), where it is observed that 
the increase in Grashof number results in temperature stratification at the center of the cubic 
cavity. This leads to an increase in temperature gradient along the height direction, and 
subsequently, an increase in heat transfer rate. Moreover, as the Grashof number increases, 
the boundary layers near the two isothermal walls become thinner, and convective heat 
transfer has become the dominant mode of heat transfer. Since the horizontal surfaces are all 
thermally conductive, the boundary layers here develop faster. 
 



Since the flow field and temperature field are coupled together, Fig. 6 shows that the 
streamlines at plane Z=0.5 also changes greatly. When the Grashof number (Gr=1×104) is 

relatively small, the natural convection is not strong enough to form more than one primary 
vortex. With the increase in the Grashof number to 1×105, the natural convection strengthens, 

and the number of vortices increases to two. When the Grashof number further increases to 
1×106, the two vortices move towards the corners under the driving force of natural 
convection and eventually settle in the top-left and bottom-right corners. This is because the 
corners are the convergence points of the heat convection, providing enough space and 
conditions for the vortices to stay. In contrast, the center area is the divergence point of the 
heat convection, and the streamlines will spread out, making it unfavorable for the vortices to 
exist. The inertia force that causes the vortex to move towards the center and the centrifugal 
force that causes the vortex to move towards the corners reach a balance, resulting in the 
vortexes concentrating in the left upper and right lower corners. 
 
Fig. 7 shows that at the plane Y=0.5 the increase in Grashof number makes the isotherms 
approaching the isothermal surfaces (X=0 and X=1), and the boundary layers of the isothermal 
surfaces become thinner, leading to an increase in heat transfer rate. 
 
According to the streamlines at the plane Y=0.5 in Fig. 8, it can be observed that the number 
of streamline intersection points increases from two to four when the Grashof number 
increases from 1×104 to 1×105. Further increasing the Grashof number to 1×106, the flow 

intensity inside the cube continues to increase, and the four streamline intersection points 
gradually move to the four corners. This phenomenon occurs because the vortex structure can 
be better maintained in the corners of the cube, where there exists a stable pressure difference 
that makes it easier for the flow to form vortices. 
 
Fig. 9 shows that in the cube, the hot fluid is located in the upper part, while the cold fluid is 
in the lower part. The phenomenon is caused by a combination of temperature gradients and 
gravity. As the Grashof number increases from 1×104 to 1×106, the convective strength 

increases, causing the upper part temperature to rise from 0.63 to 0.69 and the lower part 
temperature to decrease from 0.37 to 0.29. In other words, the temperature difference between 
the upper and lower parts of the cube becomes greater. This is because at higher Grashof 
numbers, the momentum and heat transfer become more intense, leading to more intense fluid 
motion and temperature distribution changes. The streamline in Fig. 10 changes greatly with 
the increase of Grashof number. 
 
Fig. 11 demonstrates the effects of the Grashof number and Hartman number on heat transfer. 
The average Nusselt number on the hot wall increases with the Grashof number, and a larger 
Hartman number has a greater impact on the average Nusselt number. The average Nusselt 
number increases by 326.6 % when the Grashof number increases from 104 to 106 at Ha=0, 
while the increase is only 104.8 % at Ha=100. 
 
Fig. 12 shows that the local Nusselt number increases with Grashof number and decreases 
with Hartman number. However, the position corresponding to the maximum value of local 
Nusselt number is not affected by changes in Hartman number and Grashof number. It should 
be noted that under strong magnetic fields (i.e., Ha=50 and 100), Fig. 12 (c) and Fig. 12 (d) 
show that the local Nusselt number decreases with increasing Grashof number at a height of 
0.6-1.0 on the hot wall. This phenomenon is attributed to the fact that as the Grashof number 
increases, the effects of natural convection become more significant. While, the influence of 
the magnetic field also becomes stronger. 



 
Fig. 13 illustrates that the velocity V distribution along the X direction is consistent under 
various Grashof numbers. Initially, the velocity is zero due to the no-slip boundaries. 
Subsequently, the velocity increases and reaches its maximum as a result of upward flow 
along the hot wall. Finally, the velocity decreases, and at the center of the cavity (X=0.5), the 
velocity is zero. The magnitudes of velocities in the left and right halves of the cubic cavity 
are equal but opposite in direction. Under the same Hartman number, as the Grashof number 
increases, the velocity near the wall increases while the velocity in the middle region of the 
cubic cavity decreases. For Ha=10, the maximum velocity corresponding to Gr=1×106 is 
approximately 1.6 times that of Gr=1×104. This value can reach 7.5 and 10.5 for Ha=50 and 
100, respectively. Therefore, we conclude that the velocity difference under different Grashof 
numbers becomes more pronounced with an increase in Hartman number. 

 
Fig. 4. The distribution of three-dimensional temperature isosurfaces for (a) Gr= 1×104, 

(b) Gr=1×105, (c) Gr=1×106. 

 
Fig. 5. The distribution of temperature on the plane Z=0.5 for (a) Gr=1×104，(b) Gr=1×105 

and (c) Gr=1×106. 

 



Fig. 6. The distribution of streamline on the plane Z=0.5 for (a) Gr=1×104，(b) Gr=1×105 

and (c) Gr=1×106. 

 
Fig. 7. The distribution of temperature on the plane Y=0.5 for (a) Gr=1×104，(b) Gr=1×105 

and (c) Gr=1×106. 

 
Fig. 8. The distribution of streamline on the plane Y=0.5 for (a) Gr=1×104，(b) Gr=1×105 

and (c) Gr=1×106. 

 
Fig. 9. The distribution of temperature on the plane X=0.5 for (a) Gr=1×104，(b) Gr=1×105 

and (c) Gr=1×106. 



 
Fig. 10. The distribution of streamline on the plane X=0.5 for (a) Gr=1×104，(b) Gr=1×105 

and (c) Gr=1×106. 

 
Fig. 11 The distribution of average Nusselt number with Grashof numbers on the hot wall 

for different Hartman numbers. 

 



 
Fig. 12. The distribution of local Nusselt number alone the line (0, Y, 0.5) for (a) Ha=0, (b) 

Ha=10, (c) Ha=50 and (d) Ha=100. 

 
Fig. 13. The distribution of velocity V alone the line (X, 0.5, 0.5) for (a) Ha=0, (b) Ha=10, 

(c) Ha=50, and (d) Ha=100. 

4.2 Effects of Hartmann number on natural convection 

Using the same method as in section 4.1, we next investigate the effects of the magnetic field 
applied along the Y direction on flow and heat transfer at Gr=1×105. Fig. 14 illustrates that 

increasing the Hartmann number results in isothermal surfaces that are approximately parallel 
to the Y direction, particularly for the central part of the cubic cavity. The temperature 
difference along the Y direction decreases. 
 



Fig. 15 demonstrates that at the plane Z=0.5, the isotherms become approximately parallel to 
the isothermal walls as the Hartmann number increases. The magnetic field significantly 
restricts fluid flow along the X direction, and the boundary layers near the horizontal walls 
gradually disappears, while the boundary layers of the isothermal walls become thicker. These 
changes indicate that the heat transfer mode changes from convection to conduction, and the 
flow field structure in Fig. 16 changes to some extent. 
 
Since the direction of the applied magnetic field is parallel to the Y-axis, the direction of the 
Lorentz force is perpendicular to the magnetic field direction, thus affecting the flow fields 
most significantly at the Y=0.5 plane. According to Fig. 17, as the Hartmann number increases, 
the thermal boundary layers expand towards the center. As shown in Fig. 18 (a) and Fig. 18 
(b), when the Hartmann number increases from 10 to 50, the streamlines undergo significant 
changes. As Hartmann number continues to increase to 100, the changes become less 
pronounced. 

 
Fig. 14. The distribution of three-dimensional temperature isosurfaces at Gr=1×105 for (a) 

Ha=10, (b) Ha=50 and (c) Ha=100. 

 
Fig. 15 The distribution of temperature on the plane Z=0.5 at Gr=1×105 for (a) Ha=10, (b) 

Ha=50 and (c) Ha=100. 

 



Fig. 16. The distribution of streamline on the plane Z=0.5 at Gr=1×105 for (a) Ha=10, (b) 

Ha=50 and (c) Ha=100. 

 
Fig. 17 The distribution of temperature on the plane Y=0.5 at Gr=1×105 for (a) Ha=10, (b) 

Ha=50 and (c) Ha=100. 

 
Fig. 18. The distribution of streamline on the plane Y=0.5 at Gr=1×105 for (a) Ha=10, (b) 

Ha=50 and (c) Ha=100. 

From Fig. 19, it can be observed that at the plane X=0.5 the increase of Hartmann number 
results in a decrease of the maximum temperature difference between the upper and lower 
parts of the cube. The streamline in Fig. 20 has also undergone significant changes. 
 
Fig. 21 shows that when the Hartmann number increases from 0 to 100, the average Nusselt 
number of the hot wall decreases by 26.8%, 63.3%, and 64.9% for Gr=104, 105, and 106, 
respectively. Therefore, the magnetic field more obviously affects heat transfer under large 
Grashof numbers. 

 
Fig. 19 The distribution of temperature on the plane X=0.5 at Gr=1×105 for (a) Ha=10, (b) 



Ha=50 and (c) Ha=100. 

 
Fig. 20. The distribution of streamline on the plane X=0.5 at Gr=1×105 for (a) Ha=10, (b) 

Ha=50 and (c) Ha=100. 

 

Fig. 21 The distribution of average Nusselt number with Hartmann numbers for different 

Grashof numbers. 

Fig. 22 shows that as Hartmann number increases from 0 to 50, the local Nusselt number 
decreases significantly. When Grashof increases to 1×106, the magnetic field effects are not 

obvious, and the local Nusselt number is approximately equal to that under no magnetic field 
(Ha=0) at a relatively small Hartmann number (Ha=10). The positions corresponding to the 
maxima of the local Nusselt number remain nearly unchanged. For both smaller Grashof 
(Gr=1 × 104) and larger Hartmann number (Ha=100), the local Nusselt number is 

approximately equal to 1. 
 
Fig. 23 reveals that an increase in the Hartmann number leads to a decrease in the velocity V 
along the X direction, and most of the regional flow in the square cavity is suppressed. The 
velocity and the structure of the flow field are more significantly affected by the Hartmann 
number for smaller Grashof numbers. 
 
To better understand the influence of the magnetic field on the transverse velocity (W), we 
examine the maximum velocity value in the Z direction under Ha=0, 10, 30, 40, 50, 60, 80, 
and 100. Fig. 24 demonstrates that the velocity decreases significantly as the Hartmann 
number increases from 0 to 50, but the velocity changes little as the Hartmann number 
increases from 50 to 100. 



 
Fig. 22 The distribution of local Nusselt number alone the line (0, Y, 0.5) for (a) Gr= 

1×104, (b) Gr=1×105 and (c) Gr=1×106. 

 

Fig. 23 The distribution of velocity V alone the line (X, 0.5, 0.5) for (a) Gr= 1×104, (b) 

Gr=1×105 and (c) Gr=1×106. 

 

Fig. 24 The distribution of the maximum velocity (W) with Hartmann numbers at 

Gr=1×105. 

4.3 The effects of magnetic field directions on natural convection 

Later, we analyze the difference in the effects of magnetic field directions (BX, BY) on heat 
transfer. Fig. 25 shows that the corresponding local Nusselt number of BX is lower than that of 
BY at the height of 0-0.6, and higher than that of BY at 0.6-1.  
 
Table 2 demonstrates that the averaged Nusselt number of the hot wall corresponding to BY is 
higher than that of BX under any working condition. The difference becomes more apparent as 



the Grashof number increases. Thus, we conclude that BX has greater inhibitory effects on 
heat transfer than BY. 

 
Fig. 25 The distribution of local Nusselt number alone the line (0, Y, 0.5) under the field 

of BX and BY when Gr=1×105. 

Table 2 The averaged Nusselt number on the hot wall under different magnetic field 

directions. 

Gr Ha Nuavg 

  BY BX 

104 0 1.367 1.367 
 50 1.003 1.0025 

105 0 2.785 2.785 
 50 1.209 1.175 
 100 1.021 1.013 

106 0 5.831 5.831 
 50 3.918 3.258 
 100 2.049 1.638 

5. Conclusion 

In this paper, the MHD convection is investigated in a three-dimensional rectangular cavity 
filled with a conductive fluid. One pair of walls is maintained at a constant temperature and 
the others are thermally conducting. The flow and heat transfer equations are solved directly 
using the high-precision SCM-ACM, and the effects of magnetic field strength, directions, 
and Grashof numbers on the temperature and flow fields are analyzed. Based on the analysis, 
the following conclusions are drawn.  
 
(1) For the temperature field, as the Grashof number increases, a stable thermal stratification 
forms at the center of the cubic cavity, and thermal boundary layers form near the horizontal 
walls. The increase in Grashof number enhances the heat transfer rate and increases the 
temperature difference between the upper hot fluid and the lower cold fluid in the cavity. The 
Hartmann number stabilizes the flow and weakens the heat transfer. The magnetic effects 
become more significant at higher Grashof numbers. 
 
(2) For the flow field, the increase in Grashof number enhances the convective strength near 
the wall, resulting in the formation of more vortices inside the square cavity. Under the 
combined action of centrifugal force and inertial force, these vortices move towards the 



corners. When the Hartmann number increases from 0 to 50, significant changes occur in the 
flow and temperature fields, but further increasing the Hartmann number has less influence. 
When Ha > 60, the velocity in the third direction approaches zero, simplifying the three-
dimensional flow into two-dimensional flow. 
 
(3) By comparing the heat transfer rates, we conclude that the magnetic field parallel to the 
temperature gradient (BX) has a higher inhibiting effect on heat transfer compared to the 
magnetic field perpendicular to the temperature gradient (BY.) 
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