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Abstract 

The paper proposes an enhanced version of the comprehensive learning particle swarm 

optimization (CLPSO) method for the simultaneous optimal size and shape design of steel truss 

structures under applied forces. The CLPSO approach incorporates the two novel enhancing 

techniques, namely perturbation-based exploitation and adaptive learning probabilities, in 

addition to its distinctive diversity of particles preventing the premature local optimum 

solutions. In essence, the perturbation enables the robust exploitation of the updating velocity 

of particles, whilst the learning probabilities are dynamically adjusted by the ranking 

information of personal best particles. A combination of these techniques results in the fast 

convergence and likelihood of the global optimum solution. Applications of the enhanced 

CLPSO method are illustrated through a number of successfully solved truss design examples. 

The robustness and accuracy of the proposed scheme are evidenced by the comparisons with 

available benchmarks processed by some other metaheuristic algorithms in obtaining the 

optimal size and shape distributions of steel trusses complying with limit state specifications. 
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Introduction 

Particle swarm optimization (PSO) first introduced by Kennedy and Eberhart [1] in 1995 

emulates the movement or social behavior of a bird flock. An PSO is a popular swarm-

intelligence-based algorithm which is used in many real-world optimization problems. 

However, the solutions of complex problems can often be trapped in the local optima. Many 

approaches have been studied to improve the performance of PSO methods. In 2014, Xiang Yu 

and Xueqing Zhang [3] proposed an enhanced comprehensive learning PSO (ECLPSO) based 

on the original concept of comprehensive learning PSO (CLPSO) [2], where two enhancing 

techniques construct the perturbation-based exploitation together with adaptive learning 

probabilities. 

This paper presents the novel ECLPSO method in the simultaneous size and shape optimization 

of planar truss structures. By considering both size and shape variables, the optimization 

provides the more economical material design than the size optimization alone. The 

applications of the proposed ECLPSO and its accuracy in obtaining the optimal solution are 

illustrated through the comparisons with some available benchmarks. 



State Optimization Problem 

The weight (cost) minimization problem of the truss structure consisting of n pin-connected 

members can be mathematically formulated in two design size (namely 1{ , , }n

A nA A =X ) 

and shape (
1{ , , }ng

G ngG G =X ) variables as follows:  
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where W  is the total weight of the design structure defined as the function of member density 

i , physical length iL  and cross-sectional area iA , m the total number of degrees of freedom, 

ng the total number of geometry variables, j  the displacement at the j-th degree of freedom, 

and i  the member stress. The optimization problem in Eq. (1) minimizes the total weight W  

of the structure under the bounds on permissible compression 
c

i  and tension 
t

i  stresses, 

minimum min  and maximum max  displacements, and minimum minA  and maximum maxA  

areas. 

The penalty method reformulates the constrained design Eq. (1) to an unconstrained 

optimization problem [7]-[9]. The function is defined below:  

 ( )' ,A G pW W K= X X , (2) 

 ( )1p C


 = + , (3) 

where K and   are the penalty constant and penalty exponent (viz., 1 =  in this study), C is 

the parameter measuring the violation of penalty constraints:  

 
1 1

m n
j i

j i

C C C 
= =

= +   (4) 

jC  and 
iC  are the displacement and stress constraints, respectively: 
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Comprehensive Learning Particle Swarm Optimization 

The CLPSO approach is a variant of the PSO algorithm pioneered by Liang and Qin [2] in 2006. 

The method employs the strategy that updates the particles’ velocity by learning from all other 

particles’ best information to prevent the solution from premature convergence. The velocity 

and position of a generic particle are determined by: 

 , , , ,( )
ii d i d d f d i dV wV cr pbest X= + −  (7) 

 , , ,i d i d i dX X V= +  (8) 

where i  and d  are the array indices of the particles (population) and dimensions (design 

variables), respectively; ,i dX  and ,i dV  are the position and velocity of the i-th particle at the d-

th dimension, respectively; w  is the inertia weight; c  is the acceleration coefficient being equal 

to 1.5; dr  is a random number in the range of [0,1] ; if  is the exemplar index the i-th particle 

follows; 
,if dpbest  is the best position of the fi-th particle for the d-th dimension. 
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The selection of the exemplar index is based on the learning probability iL . More explicitly, if 

the random number in a range of [0,1]  is greater than iL  then the exemplar index if  reads the 

i-th particle’s index. Otherwise, the index if  takes the location of particle associated with the 

best of the two fitness values randomly selected from the populations of the considered d-th 

dimension. 

The inertia weight is defined by:  

 ( )max max min

max

k
w w w w

k
= − − . (10) 

The maximum ( maxw ) and minimum ( minw ) inertia weights are respectively equal to 0.9 and 0.4 

for most cases, and maxk  is the maximum generation number. 

Enhanced Comprehensive Learning Particle Swarm Optimization (ECLPSO) 

Two techniques, namely perturbation-based exploitation and adaptive learning probabilities, 

are developed within the ECLPSO such that the optimal sizes and shapes of structures are 

designed. These concepts are described as follows. 



Perturbation-based Exploitation 

The perturbation-based exploitation term mainly improves the exploitation and accuracy of 

CLPSO algorithm. The scheme is considered if Eq. (11) and Eq. (12) is true. Then, the 

perturbation term is added to the velocity equation in Eq. (7). 

 ( )dd ddP XP X−  −  (11) 

 d dP P −   (12) 
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where dP  and dP  are the upper and lower bounds of the personal best position on the d-th 

dimension, respectively; dX  and dX  are respectively the upper and lower bounds of the 

search space;   is a relative ratio equal to 0.01;   is the small absolute bound with value 

equals to 2; PbEw  is the inertia weight for the approach exploitation ( PbEw  = 0.5 in this work); 

  is the perturbation coefficient assisting the supports optimization process to capture the 

global optimum. 

Adaptive Learning Probabilities 

A new adaptive learning probabilities strategy is introduced to replace the original function in 

Eq. (9) as follows: 
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 ( ) ( )max min 1
0.25 0.45log 1kD

L L M
+

= + + − . (15) 

The value iK  is a rank of personal best fitness value for the i-th particle, defined in an ascending 

order of the personal best fitness values. Moreover, minL  is fixed at 0.05, and kM  is the number 

of dimensions as when both Eqs. (11) and (12) are complied. 

Illustrative Example 

The example considers the 15-bar planar truss structure in Fig. 1 subjected to the vertical load 

of 10 kipsF = . The material properties employed were the modulus of elasticity of 410  ksi , 

the material density of 30.1 lb.in− , and the permissible tensile and compressive stresses of 

25 ksit t

i c = =  for all members {1, ,15}i . 

The sizing and shape optimization problem in Eq. (1) defined the design variables, namely the 

unknown member areas of 1 15[ , , ]AW A A=  and some coordinates variations in x- and y-axes 

of 2 3 6 7 2 3 4 6 7 8[ , , , , , , , , , ]GW x x x x y y y y y y= , where the geometry constraints of 2 6x x=  and 

3 7x x=  were imposed. Moreover, the limits on both geometry variables are listed in Table 1. 

 

 



The area variables are selected from the set available sections consisting of the discrete areas 

of A = {0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 

1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 

10.850, 13.330, 14.290, 17.170, 19.180} in2 

 

Table 1. Limit on geometry variables 

 

Figure 1. Schematic of the planar 15-bar truss structure. 

 

Figure 2. Optimum layout of the 15-bar truss structure. 

The ECLPSO method adopted 30 particles with the maximum number of 800 iterations. All 

imposed constraints were fully complied. The resulting optimal member areas and shapes of 

the planar truss are depicted in Table 2, where those from various design methods are also 

summarized. It is evidenced that the optimal design weight value of 75.1552 lb given by the 

present ECLPSO achieved the most minimum (viz., the economical design with some 8% 

lighter than that from standard PSO scheme) as compared to all other benchmarks. The optimal 

Geometry variables: ,minGX  (in) ,maxGX  (in) 

2x  100 140 

3x  220 260 

2y  100 140 

3y  100 140 

4y  50 90 

6y  -20 20 

7y  -20 20 

8y  20 60 



design shape is depicted in Fig. 2, and the plot of solution convergence in Fig. 3 presents 

monotonic variations of the design weights decreasing to the optimum over the increasing 

number of iterations. 

 

Figure 3. Solution convergence in the ECLPSO process. 

 

Table 2. Optimal area and shape solutions computed various design methods. 

Design 

variable 

Rahami 

et al. [4] 

Tang et al. 

[5] 

Gholizadh [6] ECLPSO (this study) 

PSO CPSO  Stress (ksi) 

A1 1.081 1.081 0.954 1.174 0.954 24.9120 

A2 0.539 0.539 1.081 0.539 0.539 23.8234 

A3 0.287 0.287 0.270 0.347 0.174 24.8164 

A4 0.954 0.954 1.081 0.954 0.954 -23.4293 

A5 0.539 0.954 0.539 0.954 0.539 -24.8863 

A6 0.141 0.220 0.287 0.141 0.287 -24.2336 

A7 0.111 0.111 0.141 0.141 0.111 -2.0217 

A8 0.111 0.111 0.111 0.111 0.141 -4.3943 

A9 0.539 0.287 0.347 1.174 0.539 7.0051 

A10 0.440 0.220 0.440 0.141 0.347 24.9239 

A11 0.539 0.440 0.270 0.440 0.440 -24.2596 

A12 0.270 0.440 0.111 0.440 0.270 20.0072 

A13 0.220 0.111 0.347 0.141 0.174 -24.9816 

A14 0.141 0.220 0.440 0.141 0.287 24.9373 

A15 0.287 0.347 0.220 0.347 0.174 -24.3701 

X2 101.5775 133.612 106.0521 102.2873 132.8913  

X3 227.9112 234.752 239.0245 240.5050 240.2414  

Y2 134.7986 100.449 130.3556 112.5840 118.2489  

Y3 128.2206 104.738 114.2730 108.0428 118.0375  

Y4 54.8630 73.762 51.9866 57.7952 52.0899  

Y6 -16.4484 -10.067 1.8135 6.4299 -13.5400  

Y7 -16.4484 -1.339 9.1827 1.8006 -11.9345  

Y8 54.8572 50.402 46.9087 57.7987 54.9136  

       

Weight (lb) 76.6854 79.820 82.2344 77.6153 75.1552  



Concluding Remarks 

The paper has presented the simultaneous sizing and shape optimization of the in-plane truss 

structures under limited stress and serviceability constraints. The ECLPSO shows its efficient 

and robust optimizer that incorporates the two enhancing techniques, called the perturbation-

based exploitation and the adaptive learning probabilities. The scheme by adjusting the ranking 

of personal best information advantageously overcomes the burdens associated with the 

premature solution convergence as would be experienced in standard PSO methods. The 

applications of the method have been illustrated through the design of modest-scale sizing and 

shape truss designs given in some available benchmarks. The optimal design solution can be 

achieved with the fast convergence to the optimum by processing the ECLPSO approach. The 

accuracy of the results computed has been well compared with those reported in the literatures. 
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