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Abstract 

The dynamic characteristics of a hub-functionally graded material beam undergoing large 

overall motions are studied. The deformation field of the flexible beam is described by using 

the assumed mode method (AMM), the finite element method (FEM) and the point 

interpolation method (PIM). Assuming that the physical parameters of functionally graded 

materials follow certain kind of power law gradient distribution and vary along the thickness 

direction. The longitudinal deformation and transversal deformation of the beam are both 

considered, and the nonlinear coupling term which is known as the longitudinal shortening 

caused by transversal deformation is also taken into account. The rigid-flexible coupling 

dynamics equations of the system described by three different discrete methods which have a 

uniform form are derived via employing Lagrange’s equations of the second kind. The 

validity of the point interpolation method established in this paper is verified by comparison 

with the numerical simulation results of the assumed mode method and the finite element 

method. On this basis, the influence of functional gradient distribution rules on the dynamic 

characteristics of flexible beams undergoing large overall motions is discussed. The results 

show that the assumed mode method cannot deal with large deformation problem. Remaining 

other physical parameters of functionally graded materials beam unchanged, the maximum 

displacement of the beam increases with the increase of functionally graded materials index. 

The natural frequency of transverse bending of beam increases with the increase of rotational 

speed, when rotational speed is constant, the natural frequency will decrease with the increase 

of functional gradient index. 
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1. Introduction 

With the rapid development of science and technology, the disadvantages of traditional 

materials in heat resistance and strength are more and more obvious, especially in some 

cutting-edge technologies, such as aerospace engineering, medicine, biological science and so 

on. In order to meet the needs of practical engineering, it is urgent to meet the needs of new 

composite materials under complex working conditions. Therefore, functional gradient 

materials have been proposed by scholars. Functionally gradient materials have the unique 

advantages in the field of materials, which attracts the attention of scholars all over the world. 

 

In the field of Aeronautics and Astronautics, functional gradient materials are used for 

helicopter rotors and space manipulators. The behavior of these components can be simplified 

as large overall motions. Many scholars have applied the assumed mode method, finite 

 
 



element method, mesh free method, Bezier interpolation method and so on to the deal with 

discrete problems of flexible body under large overall motions [1]-[8]. The assumed mode 

method only needs a set of modal functions to describe the deformation of the beam, and does 

not need to divide several elements along the beam, so it greatly improves the efficiency of 

programming. However, the limitation of the assumed mode method based on small 

deformation assumption is illustrated by the example of large deformation [9]. The finite 

element method needs to divide the deformation field into several elements, and then generate 

the element shape functions through the element information [10]. The mesh free method 

overcomes the shortcomings of the above methods. Chaofan Du [11]-[15] applied the mesh 

free method to the dynamic calculation of beams or plates. The results are compared with the 

results of the assumed mode method and the finite element method. Therefore, the results of 

finite element method and mesh free method are more accurate. The natural frequency of the 

beam with fixed axis rotation motion is studied, and the difference of the natural frequency of 

different models is obtained [16]. 

 

Nowadays, most of the scholars simulate the homogeneous beam with large-scale motion 

[17]-[20]. The assumed mode method with low accuracy and small application range is used 

in the dynamic simulation of FGM beams [21]. In this paper, the deformation of FGM beam is 

described by the point interpolation method (PIM) of mesh free method. Considering the 

transverse and axial deformation of the beam and the coupling deformation caused by the 

transverse bending deformation, the rigid flexible coupling dynamic equations of FGM beam 

are established. The floating coordinate system is used to describe the motion of the system. 

The second kind of Lagrange equation is used to deduce the dynamic equation of the system, 

and the simulation program of the rotating FGM beam is compiled. The simulation results of 

mesh free method (PIM) are compared with those of assumed mode method and finite 

element method, which shows the correctness and superiority of this method. 

 

2. Dynamic model of rotating FGM beams 

2.1 Physical model for rotating FGM beams 

Fig.1 shows the central rigid body functional gradient material beam system with fixed axis 

rotation in the horizontal plane. OXYZ is the inertial coordinate system; the radius of the 

central rigid body is a; the external transmission moment is  ; and the rotational inertia 

around the axis is Joh. The FGM beam is an equal section beam, and the physical parameters 

of FGM are: the length of the beam is L, the width is b, and the thickness is h. The floating 

coordinate system is Oxy along the FGM beam. The deformation of any point P on the beam 

is shown in Figure 1. Different from the traditional homogeneous beam, the physical property 

of FGM beam distribute along the thickness direction according to a certain power law 

gradient. In this paper, it is assumed that the elastic modulus E(y) and density ρ(y) of the beam 

are functions of coordinate y. 
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(a) Rigid flexible coupling system (b) Deformation of flexible beam 

Fig.1 Deformation diagram of rotating FGM beam 

2.2 Kinetic energy and potential energy of the system 

In the inertial coordinate system OXY, the vector diameter of any point on the FGM beam 

after deformation is 
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Where, Θ is the normal cosine matrix of the floating base relative to the inertial coordinate 

system, and the deformation vector u in the floating coordinate system can be expressed as: 

 
1 c( , , )xu x y t w w= +  (6) 

 
2( , )yu x t w=  (7) 

Where,
1w is the axial deformation of the flexible beam, 

2w is the deflection of the transverse 

bending of the flexible beam, and
cw is the shortening of the longitudinal deformation caused 

by the transverse bending of the flexible beam, i.e. the nonlinear coupling deformation. The 

expression is: 
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The velocity of any point of the flexible beam in the inertial coordinate system can be 

obtained by calculating the first derivative of Eq.(1). It can be expressed as: 

 0( )r = Θ R+ ρ + u +Θu  (9) 

Therefore, the total kinetic energy of the system can be expressed as: 
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According to the continuum mechanics, the longitudinal positive strain 
11

 at any point P of 

the flexible beam can be derived, and the expression is as follows: 
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Ignoring the shear and torsion effects of the beam, the deformation potential energy U can be 

expressed as: 
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2.3 Point interpolation method (PIM) 

In the discrete field Ω, a continuous function u(x) can be represented by a set of field nodes, 

and the continuous function u(x) at the calculation point P can be approximately expressed as 

follows: 
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In the above formula, pi(x) is the monomial given by the basis function in the space 

coordinates xT=[x y], ai is the undetermined coefficient of pi(x), and m is the number of 

monomials. For linear basis function PT in one dimension (1D) and two dimension (2D) space, 

it can be expressed as follows: 

 ( ) [1 ] 2 (1 )x m D= =p x
Τ  (14) 

 ( ) [1 ] 3 (2 )x y m D= =p x
Τ  (15) 

The second basis functions are as follows: 

 2( ) [1 ] 3 (1 )x x m D= =p x
Τ  (16) 

 2 2( ) [1 ] 6 (2 )x y x xy y m D= =p x
Τ  (17) 

The basis function of order p can be expressed as follows: 

 2( ) [1 ] (1 )px x x D=p x
Τ  (18) 

 2 2( ) [1 ] (2 )p px y x xy y x y D=p x
Τ  (19) 

In point interpolation, the number of nodes n in the support domain is equal to the number m 

of the base function, that is, n = m. Therefore, the undetermined coefficient ai in Eq. (13) can 

be determined by the function u(x) equal to the value on n nodes; that is 
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Therefore, Eq. (20) can be expressed as: 
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In the above formula, UC is the node deformation, and a is the unknown coefficient vector. Pm 

is dimension and order moment n n square matrix. 

 

The unknown coefficient matrix of Eq. (21) can be obtained from n equations: 
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Substituting eq. (24) into eq. (13) can obtain: 

 -1
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Where, ( )Ψ x
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PIM shaped functions have kerKronec   function properties, those properties can be 

described as: 
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Therefore, boundary conditions can be applied in the same way as FEM. In this paper, the 

corresponding boundary conditions of the cantilever beam are that the longitudinal 

deformation, transverse deformation and rotation angle of the fixed end of the beam are zero. 

 

In the integration process of PIM, different integration points correspond to different domains, 

that is, the shape function matrix corresponding to different integration points may be 

different, which is different from the finite element method. In the finite element method, all 

integral points in an element are interpolated by the same nodes. 

 

Fig.2 Discretization of FGM beams in mesh free method 

The axial and transverse displacement functions of the beam can be expressed as 
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Where n is the number of nodes in the support region, ( )x xΦ  and ( )y xΦ  are the shape 

function row matrix of the beam axial and transverse deformation respectively; ( )tA  is the 

column vector of the axial deformation of the node with time, and ( )tB  is the column vector 

of the lateral deformation and rotation angle of the node with time. They are expressed as 

y
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follows: 
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Where 
xnu is the axial deformation of the nth node and 

ynu  is the row array composed of the 

transverse deformation and rotation angle of the nth node. The coupled quadratic term of 

deformation displacement is as follows: 
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Where ( )xH is the coupled shape function, and the expression of the shape function is 
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2.4 Dynamic equations 

The axial and transverse displacement functions of functionally graded beams are substituted 

into the expressions of kinetic energy and deformation potential energy of the system, and the 

generalized coordinates q=(θ, AT, BT)T are taken, using the second kind of Lagrange equation: 
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F=( τ ,0 ,0) Tis the generalized force; τ is the principal moment of the resultant external force 

on the rigid body with respect to the center of mass O of the rigid body. Replace Eqs. (10) and 

(12) into Eq. (32), After complicated derivation, the dynamic equation can be expressed as: 
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The expression of correlation matrix in dynamic equation (33) is as follows: 
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The expression of correlation matrix coefficient in kinetic equation (34) ~ (42) is as follows: 
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Where
1M 、

2M 、
3M are elastic mass matrix;

 1K 、
2K 、

3K are elastic stiffness matrix; and

C is the first coupling term. 

 

The FGM studied in this paper consists of ceramic and metal materials, The expression of 



gradient distribution is formula (56) and fig. 3. 
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Where the subscripts h and t represent ceramic and metal materials respectively. 

-0.01 0.00 0.01
6.00E+010

8.00E+010

1.00E+011

1.20E+011

1.40E+011

1.60E+011

E
la

st
ic

 m
o
d
u
lu

s 

Thickness of beam 

 N=0.5

 N=1

 N=2

 N=5

 

-0.01 0.00 0.01
2650

2700

2750

2800

2850

2900

2950

3000

d
en

si
ty

Thickness of beam 

 N=0.5

 N=1

 N=2

 N=5

 

(a) Distribution of elastic modulus (b) Density distribution  

Fig.3 Gradient distribution of FGM 

By substituting (56) into (52) ~ (55), the expressions of density and elastic modulus are 

rewritten as: 
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Equations (34) ~ (42) is the first order model of FGM beam undergoing large overall motions. 

The first order approximate model of rotating FGM beam is obtained by removing the 

underlined part. 

 

2.5 Process of coefficient matrix 

In the above formulas, Joh, Sx, Sy, M1, M2, M3, C, D, K1, K2 and K3 are constant coefficient 

matrices. Formulas are defined on the global problem domain. In order to calculate the 

integrals in the above formulas, the whole problem domain should be discretized into a set of 

integral background grids which do not overlap each other. Taking the distance between two 

adjacent nodes of the flexible beam as the integral domain, the overall integral can be 

expressed as 
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Where nc is the number of integrated background grids, G is the integrand function, and Ωk is 

the domain of the kth integrated background grid. The Gauss integration method is used to 



solve the numerical integration, and ng Gauss points are used in each integration background 

grid, and the Eq. (61) is described as 
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Where 
iw  is the Gauss weighting factor of the ith Gauss integral point

Qix , and 
ikJ  is the 

Jacobi matrix integrating the background grid k at the integration point
Qix . 

 

In order to obtain the numerical solution of each constant matrix, the field nodes in the whole 

problem domain are numbered from 1 to N. taking the square matrix K1 as an example, The 

Eq. (49) is described as 
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Eqs. (63), (64) and (65) represent the numerical result of the node matrix 
IJK  obtained by 

the sum of the contributions of the integral points including nodes I and J in the local support 

domain. If nodes I and J are not in the local support domain of the integral point
Qix , then 

ik

IJK  is zero. Then the form of K1 is 
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Similarly, Matrix Sy can be expressed as 

 Τ

1

= ( ) ( )
gc

nn

y i Qi yI Qi ik

k i

bhw a x x J 
=

+S  (67) 

Where 

 Τ( ) ( )ik

I i Qi yI Qi ikbhw a x x J = +S  (68) 

Therefore, The Eq. (67) can be described as 
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According to the above matrix and array method, the form of matrix in formulas from Eq. (43) 

to (51) can be obtained. 

 

3. Dynamic simulation  

3.1 Model parameters 

The specific physical parameters of FGM beam are as follows: 11=1.51 10 PahE  ,
10=7 10 PatE  , 3 3=3 10 kg / mh  , 3 3=2.707 10 kg / mt  . N is the functional gradient index.

5ml = ,
22 10 mb −=  ,

22 10 mh −=  . In this paper, different discrete methods under the 

first-order model are simulated. 



3.2 Natural frequency of FGM beams 

The transverse bending vibration of a flexible beam is usually obvious when the cantilever 

beam system is rotating undergoing large overall motions, while the longitudinal vibration of 

the beam can be neglected. Therefore, the transverse bending vibration without considering 

the influence of longitudinal deformation is studied in this section. In order to simplify the 

analysis, the large-scale rotation speed is assumed to be uniform,  =0. By equation (33) the 

transverse bending vibration equation of the beam can be obtained  

 [ ] 2

2 2 3M B+ (C - M )+ K B = 0  (70) 

Eq. (70) was dimensionless and the following dimensionless variables were introduced 
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t tT L E h=（12 / ）  (73) 

Eq. (70) can be rewritten as follows: 

 
1[ ] 2

2 2 3M δ+ (C - M )+ K δ = 0  (74) 

 
1

0
y y d =  2

M
   (75) 

 
1

1 1
0

( ) d   =  C H  (76) 

 1 , ,
0

( ) [ ]


  =  y y d H  (77) 

 
1

3 , ,
0
[ ]y y d  = K

   (78) 
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N N N

N N N N
 

 

+ + +
= − +

+ + + +
  (79) 

Table 1 and Table 2 show the variation of transverse bending natural frequency with rotating 

speed of FGM beam obtained by the assumed mode method, the finite element method and 

the point interpolation method when the radius of central rigid body is zero. When calculating, 

the function index is as follow 0.5N = ; 151 / 70 = ; 3000 / 2707 = .It is assumed that the 

mode method takes the transverse fourth order mode; the finite element method takes 10 

elements and the point interpolation method takes 11 nodes. It can be seen from table 1 and 

table 2 that the first natural frequency increases with the increase of rotation speed. The error 

between the results of the assumed mode method, the finite element method and the point 

interpolation method increases with the increase of rotating speed, which indicates that the 

accuracy of hypothetical modal method will be reduced under high-speed rotation; while the 

results of the finite element method and the point interpolation method are basically 

consistent at different speeds, which shows that the point interpolation method can meet the 

accuracy requirements and the correctness of the method. Fig. 4 shows the comparison of the 

first and third natural frequencies of transverse bending of the three methods under different 

non dimensional angular velocity ratios. It can more vividly illustrate that the simulation 

results of the assumed mode method have more and more errors with the increase of rotating 

speed. The simulation results of the point interpolation method are basically consistent with 

those of finite element method. 
 

 

 

 

 

 

  



Table 1. The first order natural frequency with three different discrete methods 

Index N Speed ratio
  AMM FEM PIM 

0.5 1 4.4845 4.4846 4.4845 

0.5 2 4.5471 4.5471 4.5470 

0.5 3 4.6488 4.6487 4.6484 

0.5 4 4.7813 4.7803 4.7800 

0.5 5 4.9354 4.9326 4.9321 

0.5 10 5.9013 5.8553 5.8540 

0.5 20 8.0050 7.5431 7.5400 

 

Table 2. The third order natural frequency with three different discrete methods 

Index N Speed ratio
  AMM FEM PIM 

0.5 1 78.6623 78.6821 78.6821 

0.5 2 78.7407 78.7599 78.7598 

0.5 3 79.5085 79.5262 79.5259 

0.5 4 80.2414 80.2548 80.2545 

0.5 5 80.9592 80.9646 80.9639 

0.5 10 88.4284 88.2771 88.2749 

0.5 20 113.0945 111.7220 111.7152 
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(a) The first order natural frequency (b) The third order natural frequency 

Fig.4 Natural frequency 

Fig.5 shows the variation of the natural frequency of the FGM beam with the function 

gradient index obtained by using the assumed mode method, the finite element method and 

point interpolation method when the radius of the central rigid body is zero and the rotational 

speed of the FGM beam is constant. The function index is as follow 3 = ; 151 / 70 = ;

3000 / 2707 = . It can be found from Fig.5 that when the speed is constant, the natural 

frequency will decrease with the increase of functional gradient index N, indicating that the 

greater the flexible beam system, the greater the flexibility, which is consistent with the 

conclusion shown in Fig. 14. 
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(a) The first order natural frequency (b) The third order natural frequency 

Fig.5 Natural frequencies of different functional gradient indices 

3.3 Characteristics of system dynamics 

The assumed mode method, finite element method and point interpolation method are used to 

describe the deformation field of the flexible beam. It is assumed that the mode method takes 

the transverse fourth order mode; the finite element method takes 10 elements and the point 

interpolation method takes 11 nodes. It is assumed that the law of the large-scale motion of 

the FGM beam is known 

 

2π
sin( ) 0

= 2π
t t T

T t

t T

 





 




−  


 

 (80) 

After 15s, the FGM beam rotates at a constant speed. We first study the difference between 

the zero-order model (Deleting the underlined items of Eqs. (34)~(42)) and the first-order  

approximate model (Deleting the double underlined items of Eqs. (34)~(42)). The dynamic 

characteristics of FGM beams with FGM index N = 2 are studied by taking 4, 10 and 20 rad/s 

respectively. Then, the dynamic characteristics of the functional gradient index N with 0, 0.5, 

1, 2, 5 are studied when the speed is 4rad/s. 

 

Figs. 6~7 show the comparison between the zero-order model (ZOAC) and the first-order 

model (FOAC) of PIM at different speeds. When the speed is 0.4rad/s, the zero-order model is 

almost the same as the first-order model. When the speed is 5rad/s, the calculation result of 

the zero-order model is divergent, and the result of the first-order approximate model is 

convergent. Therefore, as the speed increases, the calculation results of the first-order 

approximate model are more reliable. 

 

Figs. 8~13 show the lateral deformation displacement and lateral deformation velocity at the 

end of flexible beam. The physical parameters are as follows: N = 2, 4,10,20 rad/s=
. It 

can be seen from the figure that the simulation results of the assumed modal method, the 

finite element method and the point interpolation method are basically consistent when the 

speed is low, which indicates the correctness of the model established by the finite element 

method in this paper. With the increase of the rotating speed, the deviation between the 

assumed mode method and the finite element method and the point interpolation method 

becomes larger and larger, and the calculation results of the finite element method and the 

point interpolation method are almost the same. This is because the hypothetical modal 

method is based on the hypothesis of small deformation. With the increase of the rotational 

speed, the deformation is becoming larger and larger, and the error of the hypothetical modal 

method is bound to increase. It can be seen from the enlarged transverse deformation 

displacement drawings in each figure that the vibration balance position is not on the beam 



axis, but has an offset, and the greater the speed, the more obvious the offset. This is because 

when N > 0, the metal and ceramic materials are not evenly and symmetrically distributed on 

both sides of the beam axis, and the axial and transverse coupling potential energy is 

produced in the calculation of deformation energy. 

 

Fig. 14 shows the variation of lateral deformation of flexible beam end with functional 

gradient index N. It can be seen that the maximum transverse deformation of the beam end 

increases with the increase of the functional gradient index N in the process of accelerating 

the deployment of large-scale motion. It can be seen from the enlarged figure of lateral 

deformation displacement that when N=0, the material degenerates into homogeneous 

material, and the vibration equilibrium position is on the beam axis. When N>0, the vibration 

equilibrium position shifts. 

 

Fig. 15 shows the large lateral bending deformation at the end of the beam. The specific 

physical parameters are as follows: N=0, 11

h =1.51 10 /20PaE  , 
1 =10rad/s . As shown in the 

figure, the maximum deformation of the beam exceeds 3.2m, which belongs to the case of 

large deformation. The result of the finite element method and the point interpolation method 

is converged while the result of the assumed mode method is diffuse. 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.6 Comparison of a FOAC model and a ZOAC model (
1
=0.4rad/s ) 
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Fig.7 Comparison of a FOAC model and a ZOAC model ( 1
=5rad/s ) 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.8 Tip transverse deformation of the FGM beam(
1
=4rad/s ) 
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(a) 0～20s Transverse velocity  (b) 15～20s Transverse velocity 

Fig.9 Tip transverse velocity of the FGM beam( 1
=4rad/s ) 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.10 Tip transverse deformation of the FGM beam(
1
=10rad/s ) 
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(a) 0～20s Transverse velocity  (b) 15～20s Transverse velocity 

Fig.11 Tip transverse velocity of the FGM beam(
1
=10rad/s ) 
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(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.12 Tip transverse deformation of the FGM beam(
1
=20rad/s ) 
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(a) 0～20s Transverse velocity  (b) 15～20s Transverse velocity 

Fig.13 Tip transverse velocity of the FGM beam(
1
=20rad/s ) 

 

 



0 4 8 12 16 20
-0.16

-0.12

-0.08

-0.04

0.00

0.04

T
ip

 t
ra

n
sv

er
se

 d
ef

o
rm

at
io

n
 w

2
/m

Time t/s

 N=0        N=2

 N=0.5      N=5

 N=1       PIM

 
15 16 17 18 19 20

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

T
ip

 t
ra

n
sv

er
se

 d
ef

o
rm

at
io

n
 w

2
/m

Time t/s

 N=0        N=2

 N=0.5      N=5

 N=1       PIM

 
(a) 0～20s Transverse deformation  (b) 15～20s Transverse deformation 

Fig.14 Tip transverse deformation of the FGM beam(
1
=4rad/s ) 
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Fig.15 Tip transverse deformation of the FGM beam(
1
=10rad/s ) 

 

4. Conclusions 

1. The accuracy of the first-order approximate model is better than that of the zero-order 

model. 

2. The maximum tip transverse deformation of the FGM beam increases with the increase of 

the functional gradient index N. When N>0, the equilibrium position of steady-state 

vibration will shift and not be on the beam axis. 

3. It is assumed that the results of modal method are divergent when the deformation is large, 

so it can not deal with the problem of large deformation. The results of the finite element 

method and the point interpolation method are convergent and can be used to solve large 

deformation problems. 

4. The transverse bending natural frequency increases with the increase of rotating speed and 

decreases with the increase of functional gradient index N. 
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