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Abstract 

We present an optimal eighth-order scheme which will work for multiple zeros with 
multiplicity 1)( ≥m , for the first time. Earlier, the maximum convergence order of 
multi-point iterative schemes was six for multiple zeros in the available literature. So, the 
main contribution of this study is to present a new higher-order and as well as optimal scheme 
for multiple zeros for the first time. In addition, we present an extensive convergence analysis 
with the main theorem which confirms theoretically eighth-order convergence of the 
presented scheme. Moreover, we consider several real life problems which contain simple as 
well as multiple zeros in order to comparison with the existing robust iterative schemes. 
Finally, we conclude on the basis of obtained numerical results that the proposed iterative 
methods perform far better than the existing methods in terms of residual error, computational 
order of convergence and difference between the two consecutive iterations.  

Keywords: Nonlinear equations, Kung-Traub conjecture, multiple zeros, efficiency index, 
optimal iterative methods.  

Introduction 

In the earlier years, it was very tough to construct a higher-order optimal multi-point scheme 
for multiple zeros of the involved function f with multiplicity 1)( ≥m . One of the main 
reason was the lengthy and complicated calculation which was quite tough or consume a lots 
of time to solve. Nowadays, with the advancement of digital computer, advanced computer 
arithmetics and symbolic computation, the construction of higher-order optimal multi-point 
methods become more vital and popular in this field. Because, the calculation of error 
equations of iterative methods and asymptotic error constant term for multiple zeros become 
easier now than the earlier time. However, still there is a need of hard work in order to 
construct higher-order optimal schemes. 

Several scholars from worldwide like Li et al. [1] in (2009), Sharma and Sharma [2] and Li et 
al. [3] in (2010), Zhou et al. [4] in (2011), Sharifi et al. [5] in (2012), Soleymani et al. [6], 
Soleymani and Babajee [7], Liu and Zhou [8] and Zhou et al. [9] in (2013), Thukral [10] in 
(2014), Behl et al. [11] and Hueso et al. [12] in (2015) and Behl et al. [13] in (2016) have 
presented optimal fourth-order methods for multiple zeros in last two-three decades. In 
addition, Li et al. [3] (expect two of them are optimal) and Neta [14] presented non-optimal 
fourth-order iterative methods. Most of the above listed methods are the extension or 
modification of modified Newton’s method (also known as Rall’s method [20]) or Newton 
like method at the expense of additional functional evaluations or increase the substep of the 



original methods. 

In the last two decades, many researchers from worldwide have tried to develop an optimal 
scheme whose convergence order should be greater than four (for multiple zeros with 
multiplicity 1≥m  of univariate function). But, none of them have succeeded in this direction 
till date. However, some scholars have attained maximum sixth-order convergence in the case 
of multiple zeros which can be find in the available literature. There are only three multi-point 
iterative schemes with sixth-order convergence for multiple zeros till date, according to our 
best knowledge (which were proposed in the recent years). First one was proposed by Thukral 
[15] and other two were presented by Geum et al. [16, 17]. The details can be seen as follow: 

In 2013, Thukral [15] presented a multi-point iterative method with sixth-order convergence, 
which is given by 
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 (1.1) 

In 2015, Geum et al. [16], have given the following two-point sixth-order iterative scheme: 
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yfs
xf
yfp  and 𝑄𝑄:ℂ2 → ℂ is holomorphic function in the 

neighborhood of origin (0,0) .  

In 2016, Geum et al. [17], have again proposed a three-point iterative scheme with sixth-order 
convergence for multiple zeros. The proposed scheme was based on weight function 
approach, which can be seen in the following expression:  
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 where, m

n

n
n xf

yfp
)(
)(= and .

)(
)(= m

n

n
n xf

wft  The weight functions 𝐺𝐺:ℂ → ℂ is analytic in a 

neighborhood of 0  and 𝐾𝐾:ℂ2 → ℂ is holomorphic in a neighborhood of (0,0) . 

All of the above three schemes (1.1), (1.2) and (1.3) require four functional evaluations in 

order to produce sixth-order convergence with the efficiency index 1.5650=64
1

. So, none of 
them is optimal scheme according to the classical Kung-Traub’s conjecture [18]. In addition, 
the above expression (1.2) has one more drawback that it does not work for simple zeros (i.e. 

1=m ). Moreover, there does not exist any optimal scheme whose convergence order is 
greater than four in the case of multiple zeros according to our best knowledge. So, we need 
optimal eighth-order schemes which will work for multiple zeros ( 1>m ) as well as for 
simple zeros ( 1=m ) because they have better efficiency index than fourth and sixth-order 
methods. Furthermore, these schemes also require a small number of iterations in order to 
obtain desired accuracy as compare to fourth and sixth-order methods. 

Motivated and inspired by this, we present an optimal scheme with eighth-order convergence, 
which will work for multiple zeros with multiplicity 1≥m , for the first time. The proposed 
scheme requires four functional evaluations in order to reach eighth-order convergence with 

the efficiency index 1.6817=84
1

, which is higher than the efficiency index of any of the 
existing methods for multiple zeros in the available literature (also of the recent sixth-order 
schemes proposed by Thukral [15] and Geum et al. [16, 17]). The rest of the paper is 
organized as follows. Section 2 provides the methodology and convergence analysis for the 
proposed optimal eighth order scheme. In Section 3, some special cases of the new scheme 
are considered. Section 4 is devoted to numerical experiments and comparisons of different 
multiple zero finders using some real life problems. Finally, conclusions are given in Section 
5. 

Construction of optimal scheme with eighth-order convergence 

This section is devoted to the main contribution of this study and convergence analysis of the 
proposed scheme with main theorem. Here, we consider the following proposed by Wang and 
Liu [19]  
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Where 𝐺𝐺,𝐻𝐻,𝑉𝑉,𝑊𝑊:ℝ → ℝ are the weight functions and sufficiently differentiable in the 
neighborhood of origin. The above scheme is an optimal eighth-order scheme for only simple 
zeros. 

Now, we want to extend this scheme for multiple zeros with multiplicity 1≥m . So, we will 



rewrite the above expression (2.1) in simpler form with some modifications in second and 
third substep, in the following way:  
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where 𝛼𝛼1,𝛼𝛼2 ∈  ℝ are two free disposable parameters and the weight function 𝑃𝑃𝑓𝑓:ℂ → ℂ is 

an analytic function in a neighborhood of (0)  with 
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disposable parameters. It is worthy to note that we will obtain well known King’s family of 
fourth-order iterative methods for 1=m  with the help of first two substep. In addition, we 
can obtain an optimal eighth-order scheme for simple zeros as special case of Wang and Liu’s 
scheme for 1=m . 

In the next Theorem 2.1, we demonstrate that the order of convergence of the proposed 
scheme will reach at optimal eight without using additional functional evaluations. It is 
interesting to observe that how fP  and disposable parameters 1,2)=,( iiα  contributes their 
role in the construction of the desired eighth-order convergence (for the details please see the 
Theorem 2.1). 

Theorem 2.1 Let us consider ξ=x  (say) be a multiple zero with multiplicity 1≥m  of the 
involved function f . In addition, we assume that 𝑓𝑓:ℂ → ℂ be an analytic function in the 
region enclosing a multiple zero ξ . The proposed scheme defined by (2.2) has an optimal 
eighth-order convergence, when it satisfies the following expressions  
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 where R∈β .  

Proof. Let us assume that ξ−nn xe =  be the error at nth step. Now, expand )( nxf  and 
)( n

' xf  about ξ=x  by the Taylor’s series expansion (with the help of  Mathematica 11), 
we have 
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By inserting the above expressions (2.4) and (2.5), in the first substep of (2.2), we will 
yield  
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where ),,,,(= 821 cccmAA kk 2  are given in terms of 8321 ,,,,, ccccm 2  with explicitly 

written two coefficients 4)}(31)({31= 21
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etc. 

With the help of Taylor’s series expansion and expression (2.6), we have  
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By using the expressions (2.4) and (2.7), we get 
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Now, insert the expressions (2.6) – (2.8) in the second substep of scheme (2.2), we obtain  
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where ),,,,(= 821 cccmBB jj 2  are given in terms of 8321 ,,,,, ccccm 2  with explicitly 

written three coefficients 𝐵𝐵0 = − 1
6𝑚𝑚4 {𝑐𝑐14(12𝛽𝛽2 + 36𝛽𝛽 + 7𝑚𝑚2 + 12(3𝛽𝛽 + 1)𝑚𝑚 + 5) +

12𝑐𝑐1𝑐𝑐3𝑚𝑚2 + 12𝑐𝑐22𝑚𝑚2 − 24𝑐𝑐2𝑐𝑐12𝑚𝑚(3𝛽𝛽 + 𝑚𝑚 + 1)},𝐵𝐵1 = 1
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46𝑚𝑚3 + (288𝛽𝛽 + 101)𝑚𝑚2 + 2𝑚𝑚(96𝛽𝛽2 + 252𝛽𝛽 + 37) + 19}  

and  
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Again with the help of above expression (2.9) and the Taylor’s series expansion, we have  
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By using the above expressions (2.7) and (2.10), we further obtain  
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Where 𝜃𝜃1 = − 1
3𝑚𝑚3 {𝑐𝑐13(6𝛽𝛽2 + 12𝛽𝛽 + 2𝑚𝑚2 + 3𝑚𝑚(4𝛽𝛽 + 1) + 1) + 6𝑚𝑚2𝑐𝑐3 − 6𝑚𝑚𝑐𝑐1𝑐𝑐2(4𝛽𝛽 +
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24𝑚𝑚4 [−12𝑐𝑐2𝑐𝑐12𝑚𝑚(24𝛽𝛽2 + 36𝛽𝛽 + 6𝑚𝑚2 + 𝑚𝑚(40𝛽𝛽 + 7) − 1) + 24𝑐𝑐1𝑐𝑐3𝑚𝑚2(12𝛽𝛽 + 3𝑚𝑚 + 2) +
12𝑚𝑚2(𝑐𝑐22(16𝛽𝛽 + 3𝑚𝑚 + 3) − 6𝑚𝑚𝑐𝑐4) + 𝑐𝑐14{48𝛽𝛽3 + 96𝛽𝛽2 + 72𝛽𝛽 + 18𝑚𝑚3 + (144𝛽𝛽 +
25)𝑚𝑚2 + 6(24𝛽𝛽2 + 36𝛽𝛽 − 1)𝑚𝑚 − 13}]  and 𝜃𝜃3 = − 1
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2𝑚𝑚𝑐𝑐5) + 60𝑐𝑐3𝑐𝑐12𝑚𝑚2(18𝛽𝛽2 + 24𝛽𝛽 + 4𝑚𝑚2 + 28𝛽𝛽𝑚𝑚 + 3𝑚𝑚 − 3) + 60𝑐𝑐1𝑚𝑚2{𝑐𝑐22(24𝛽𝛽2 + 24𝛽𝛽 +
4𝑚𝑚2 + 32𝛽𝛽𝑚𝑚 + 3𝑚𝑚 − 3) − 2𝑐𝑐4𝑚𝑚(8𝛽𝛽 + 2𝑚𝑚 + 1)} − 20𝑐𝑐2𝑐𝑐13𝑚𝑚(48𝛽𝛽3 + 72𝛽𝛽2 + 36𝛽𝛽 +
12𝑚𝑚3 + (108𝛽𝛽 + 11)𝑚𝑚2) + 18(7𝛽𝛽2 + 8𝛽𝛽 − 1)𝑚𝑚 − 17) + 𝑐𝑐15{3(40𝛽𝛽4 + 80𝛽𝛽3 + 40𝛽𝛽2 −
21) + 48𝑚𝑚4 + 10(48𝛽𝛽 + 5)𝑚𝑚3 + 15(48𝛽𝛽2 + 56𝛽𝛽 − 7)𝑚𝑚2 + 10(48𝛽𝛽3 + 72𝛽𝛽2 + 36𝛽𝛽 −
17)𝑚𝑚}]. 

Since it is clear from the expression (2.8) that u  is of order ne . Therefore, we can expand 
weight function )(uPf  in the neighborhood of origin by Taylor’s series expansion up to 
third-order terms as follows: 
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By using the expressions (2.4)–(2.12) in the last substep of proposed scheme (2.2), we have 
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where ),,,(0),(0),(0),(0),,,,,(= 82121 cccPPPPmEE ''''''
ii 2ααβ .  

It is straightforward to say from the above expression (2.13) that we can easily obtain at least 
fifth-order convergence, when we will choose the following value of 1α  
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With the help of the above expression (2.14) and 0,=1E  we obtain  
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which further yield 
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Again, inserting the above expressions (2.14) and (2.16) in 0,=2E  we have  
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the above two independent expressions, which further leads us  
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Now, by using the above expressions (2.14), (2.16), (2.18) and 0,=3E  we obtain  
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Finally, by substituting the above expressions (2.14), (2.16), (2.18) and (2.20) in the 
expression (2.13), we obtain the following optimal asymptotic error constant term  
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 The above asymptotic error constant (2.21) reveals that the proposed scheme (2.2) reaches at 
optimal eighth-order convergence by using only four functional evaluations (viz. 

)(),(),( nn
'

n yfxfxf  and )( n
' zf ) per iteration. This completes the proof.   

Some special cases of weight function 

In this section, we will discuss some special cases of our proposed scheme (2.2) by assigning 
different kind of weight functions fP . In this regard, please see following cases, where we 
have mentioned some different kind of members of the proposed scheme:  

Case A: Let us describe the following weight function directly from the proposed 
Theorem 2.1  
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 Thus, the corresponding optimal eighth-order iterative scheme is given by  
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Case B: Now, we suggest rational weight function satisfying the conditions (2.3) as 
follows.  
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 is a new optimal eighth-order scheme.  

Case C: let us consider another rational weight function which satisfies the conditions 
of (2.3), is given by  
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 By using the above expression, we obtain the following optimal eighth-order scheme:  
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 In the similar fashion, we can develop several new and interesting optimal schemes with 
eighth-order convergence for multiple zeros by just assigning different values to β  or 
considering new weight functions which satisfy the conditions of Theorem 2.1.  

Numerical experiments 

This section is devoted to demonstrate the efficiency, effectiveness and convergence behavior 
of the presented scheme. In this regards, we consider some of the special cases of the 

proposed scheme namely, expression (3.2) 







2
1=for β , expression (3.4) 








3
1=for β  and 

expression (3.6) (for 0=β ), denoted by 2)(1),( MM  and 3)(M , respectively. In addition, 
we choose a total number of five test problems for comparison: first one is eigen value 
problem; second one is Van der Waals equation which state the behavior of real gas; third one 
again is related to chemical reactor problem but for simple zeros; last two are standard test 
functions, which can be seen in the examples 4.1–4.5. 

Now, we want to compare our methods with other existing robust methods of same order on 
the basis of difference between two consecutive iterations, computational order of 
convergence ρ  and residual errors in the function. Unfortunately, there is no optimal 
eighth-order iterative methods for multiple zeros available in the literature in order to 
comparison. So, we have chosen sixth-order iterative methods for the comparison which is the 
highest-order till date for multiple zeros. 



Therefore, we compare the proposed methods with the family of two-point sixth-order 
methods, which were presented by Guem et al. in [16], out of them we consider the following 
expression:  
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 called by ( 1GM ). 

Finally, we compare them with another non-optimal scheme with sixth-order convergence 
based on weight function approach proposed by the same authors Guem et al. [17], out of 
them we chose the following expression:  
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 denoted by ( 2GM ). 

In Tables 1–2, we display the number of iteration indexes )(n , error in the consecutive 
iterations || 1 nn xx −+ , computational order of convergence ( ρ ) (we used the formula given by 
Cordero and Torregrosa [24] in order to calculate ρ ) and absolute residual error of the 
corresponding function |))((| nxf . We did our calculations with several number of significant 
digits (minimum 3000 significant digits) to minimize the round off error. 

As we mentioned in the above paragraph that we calculate the values of all the constants and 
functional residuals up to several number of significant digits but due to the limited paper 
space, we display the value of errors in the consecutive iterations || 1 nn xx −+  and absolute 
residual errors in the function |)(| nxf  up to 2  significant digits with exponent power in 
Tables 1–2. Moreover, computational order of convergence is up to 5 significant digits. 
Finally, we display the values of approximated zeros up to 30  significant digits in the 
examples. 

For the computer programming, all computations have been performed using the 
programming package 11 aMathematic  with multiple precision arithmetic. Further, the 
meaning of )( ba ±  is )(10 ba ±×  in the following Tables 1–2. 

Example 4.1. Eigen value problem: 

One of the toughest and challenging task of linear algebra is concern with the eigen values of 
a large square matrix. Further, finding the zeros of characteristic equation of square matrix 
greater than 4 is another big challenge. So, we consider the following 99×  matrix 
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 The corresponding characteristic polynomial of the above matrix (A) is given as follows:  

 
12960.24732699315927176638455226134929=)( 23456789

2 +−++−+−+− xxxxxxxxxxf (4.3) 

 The above function has one multiple zero at 3=ξ  of multiplicity 4 with initial 
approximation 3.1=0x .  

Example 4.2. Van der Waals equation of state 
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explains the behavior of a real gas by introducing in the ideal gas equations two parameters, 
1a  and 2a , specific for each gas. The determination of the volume V  of the gas in terms of 

the remaining parameters requires the solution of a nonlinear equation in V.   
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Given the constants 1a  and 2a  of a particular gas, one can find values for Pn,  and T , 
such that this equation has a three real zeros. By using the particular values, we obtain the 
following nonlinear function  

 5.2675.9.08255.22=)( 23
2 −+− xxxxf  (4.6) 

have three zeros and out of them one is a multiple zero 1.75=ξ  of multiplicity of order two 
and other one simple zero 1.72=ξ . However, our desired zero is 1.75=ξ . We considered 
initial guess 1.8=0x  for this problem.  

Example 4.3. Fractional conversion in a chemical reactor: 

Let us consider the following expression (for the details of this problem please see [26]) 
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 In the above expression x  represents the fractional conversion of species A in a chemical 
reactor. Since, there will be no physical meaning of above fractional conversion if x  is less 
than zero or greater than one. In this sense, x  is bounded in the region 10 ≤≤ x . In 
addition, our required zero to this problem is 29459641297962537538790.75739624=ξ . 
Moreover, it is interesting to note that the above expression will be undefined in the region 

10.8 ≤≤ x  which is very close to our desired zero. Furthermore, there are some other 
properties to this function which make the solution more difficult. The derivative of the above 
expression will be very close to zero in the region 0.50 ≤≤ x  and there is an infeasible 
solution for 1.098=x . So, we consider the initial approximation 0.76=0x .  

Example 4.4. Let us consider the following standard nonlinear test function from Behl et al. 
[13] 
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 The above function has a multiple zero at 23712333102464448267160.72858404= −ξ  of 
multiplicity 3  with initial guess 0.69=0 −x    

Example 4.5. We assume another standard test problem from Petkovíc et al. [21], which is 
defined by  

 3,)(sin3)(
212

=)(
24

5 ++−+++− xxexxxxf x  (4.9) 

 This function 5f  has multiple zero at 0=ξ  of multiplicity 3 . We will start with the 
initial approximation 0.6=0x  for this problem.   

Table 1. Difference between two consecutive iterations (i.e. || 1 nn xx −+ ) of different 
iteration functions.     

)(xfi  n    1GM    2GM   1M    2M   3M  

)(1 xf  1  3)5.2(−  2)1.3(−  2)2.8(−  2)2.8(−  2)2.9(−  

 2   11)2.5(−  13)2.4(−  15)4.0(−  15)2.8(−  15)1.9(−  

 3  33)5.0(−  78)9.8(−  118)8.2(−  119)3.1(−  121)9.6(−  

 ρ    2.9610    5.9962    7.9925  7.9939   7.9948 



)(2 xf  1  4)8.1(−  3)1.1(−  4)2.6(−  4)2.1(−  4)1.6(−  

 2   12)4.5(−  11)4.7(−  19)3.6(−  20)3.0(−  21)1.3(−  

 3  61)1.6(−  55)5.0(−  138)6.1(−  147)5.2(−  158)3.1(−  

 ρ    5.9908    5.9840    7.9977   7.9987   8.0512  

)(3 xf  1  ∗  9)5.4(−  12)5.1(−  13)1.1(−  14)2.2(−  

 2        * 43)4.6(−  81)1.2(−  97)6.4(−  103)5.2(−  

 3       * 247)1.9(−  638)1.5(−  762)1.1(−  812)4.9(−  

 ρ   **    6.0000    8.0000   8.0000   8.0512  

)(4 xf  1  8)1.6(−  8)2.7(−  10)1.0(−  11)8.3(−  11)6.5(−  

 2   46)2.5(−  45)9.2(−  79)7.0(−  79)1.0(−  81)9.7(−  

 3  273)3.5(−  263)1.3(−  624)3.5(−  631)5.6(−  639)2.6(−  

 ρ    6.0000    6.0000    8.0000   8.0000   8.0000  

)(5 xf  1  8)5.8(−  6)2.0(−  8)4.4(−  8)4.3(−  8)4.3(−  

 2   47)1.2(−  38)5.2(−  64)5.6(−  64)4.6(−  64)3.5(−  

 3  286)9.4(−  227)1.4(−  511)4.2(−  512)6.9(−  513)6.0(−  

 ρ    6.0000    6.0000    8.0000   8.0000   8.0000  

( *  means method is not working for simple zero ( 1=m ), **  means COC ( ρ ) can’t be 
calculated for this method.)  

   

  

Table 2. Comparison based on residual error (i.e. |)(| nxf ) of different iteration 



functions.     

)(xfi  n   1GM    2GM   1M    2M   3M  

)(1 xf    1  12)5.8(−  6)2.3(−  5)5.4(−  5)5.4(−  5)5.4(−  

 2   41)2.9(−  49)2.5(−  56)2.1(−  57)5.0(−  57)1.1(−  

 3  128)4.9(−  307)7.5(−  467)3.7(−  473)7.4(−  479)6.8(−  

)(2 xf   1  8)2.0(−  8)3.4(−  9)2.0(−  9)1.4(−  10)7.9(−  

 2   25)6.0(−  23)6.6(−  39)4.0(−  41)2.7(−  44)5.4(−  

 3  124)7.5(−  111)7.5(−  276)1.1(−  295)8.1(−  317)2.9(−  

)(3 xf   1  
 

7)4.3(−  10)4.1(−  12)8.5(−  12)1.8(−  

 2   
 

41)3.7(−  80)9.9(−  95)5.1(−  101)4.2(−  

 3  
 

245)1.5(−  636)1.2(−  761)8.4(−  810)3.9(−  

)(4 xf   1  23)1.1(−  23)5.2(−  30)2.7(−  30)1.5(−  31)6.9(−  

 2   127)4.2(−  132)2.0(−  235)8.6(−  237)2.7(−  240)2.4(−  

 3  817)1.1(−  789)6.0(−  1870)1.1(−  1891)4.4(−  1916)4.7(−  

)(5 xf   1  23)3.3(−  18)1.4(−  23)1.4(−  23)1.4(−  23)1.3(−  

 2   142)2.9(−  113)2.3(−  191)2.9(−  191)1.6(−  192)6.9(−  

 3  856)1.4(−  682)4.7(−  1532)1.2(−  1535)5.4(−  1538)3.6(−  

 

 

Conclusions 

In this paper, we present an optimal eighth-order iterative scheme for finding multiple zeros 



of the involved function f  with multiplicity 1≥m , for the first time. An extensive 
convergence analysis is done which confirms theoretically eighth-order convergence of the 
proposed scheme. In addition, the proposed scheme is optimal in the sense of classical 
Kung-Traub conjecture. The beauty of the proposed methods is that they have not only 
smaller errors difference between two consecutive iterations and minimum residual errors 
corresponding to the considered test functions if . But, they also demonstrate the stable 
computational order of convergence as compared to the other listed methods. Further, the 
computational efficiency index of the proposed schemes is 1.6828= 4 ≈E  which is better 
than the efficiency index of classical Newton’s method 1.4142= 2 ≈E  and also the 
schemes proposed by Thukral [15] and Guem et al. [16, 17], 1.5656= 4 ≈E . Moreover, we 
can obtain several new optimal and interesting iterative methods of order eight by considering 
different types of weight functions and assigning different values to disposable parameter β . 
Finally, on accounts of the numerical results obtained, it can be concluded that our proposed 
methods are highly efficient and perform better than the existing methods for multiple zeros. 
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