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Abstract 

In the heat treatment process, blood perfusion starts up a negative feedback mechanism. The 
blood temperature undergoes a transient process before onset of equilibrium, and then 
changes the situation of temperature distribution. In substance, the blood temperature 
undergoes a transient process for heat exchange between blood and tissue. For more fully 
exploring the heat transfer behavior of biological tissue, this paper analyzes the bio-heat 
transfer problem with the non-constant blood temperature based on the Pennes bioheat 
equation. A numerical scheme based on the Laplace transform is proposed to solve the bio-
heat transfer problem with simultaneous equations. 
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Introduction 

Based on experiment analysis, in1948, Pennes[1] proposed the first constitutive relationship 
between temperature and the blood flow rate. This relation is popularly known as Pennes' 
bioheat equation. The equation includes a special term that describes the heat exchange 
between blood flow and solid tissues. Many researchers used it to deal with various problems. 
The literature [2, 3] modeled small breast carcinomas surrounded by extended health tissue as 
a solid sphere and investigated the effect of dose on the temperature distribution. Kuznetsov[4] 
explored the temperature distribution with a transient thermal dose and investigated the effect 
of thermal dose accumulation during cooling. Michelea et al. [5] studied how the infusion 
behavior of magnetic nanofluids affects the thermal response in tissue. Lin et al. [6] 
numerically studied the bio-heat transfer problem in a bi-layered spherical tissue with blood 
perfusion and metabolism. Kudryashov and Shilnikov[7] used the Pennes bioheat model to 
describe he heat transfer in soft tissue during the thermal exposure to low temperature. Ma et 
al. [8] analyzed the effect of controlling the blood perfusion and temperature into the brain on 
brain hypothermia. 
It is believed that even the applications with the estimated values do not affect explanation of 
the applicability of the bioheat transfer model [9]. For convenience of analysis, therefore, the 
above papers [2-8] regarded the blood temperature as a constant. In the heat treatment process, 
blood perfusion starts up a negative feedback mechanism. The blood temperature undergoes a 
transient process before onset of equilibrium, and then changes the situation of temperature 
distribution. In substance, the blood temperature undergoes a transient process for heat 
exchange between blood and tissue [10]. For more fully exploring the heat transfer behavior 
of biological tissue, this paper analyzes the bio-heat transfer problem with the non-constant 
blood temperature. A numerical scheme based on the Laplace transform is proposed to solve 
the present problem. 

Problem Formulation 

Energy conservation equation of bioheat transfer described in the Pennes model is 
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Here, , c, and T denote density, specific heat, and temperature of tissue. bc  and bw  are, 

respectively, the specific heat and perfusion rate of blood. mq  is the metabolic heat generation 

and rq  is the heat source for spatial heating. bT  is the arterial temperature. 

This work considers that the skin surface temperature could be kept constant as the skin 

contacts with a large steel plate at a high temperature. The assumption that heat flux 

approaches zero deep in tissue x = L was made. The present work defines the heat transport in 

the skin with constant physiological parameters as the following equations. 
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And then, the he boundary conditions can be written as 
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and the initial conditions 
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where biT  is the initial blood temperature and is specified as 37 
o
C. 

The blood temperature always was assumed to be constant arterial blood temperature   for 

studying such problems. In substance, the blood temperature undergoes a transient process for 

heat exchange between blood and tissue. The transient process was defined by [6] 
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 where G is the coupling factor between blood and tissue.   is a proportional rate. 

Analytical Method 

Two new variables H and TB are defined as biTTH   and bibB TTT  . Eq. (2) can be 

rewritten for 0rq  as 
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The boundary conditions become 

 0),0( HtH     (7)           (5) 

 0
),(






x

tLH
   (8)           (5) 

The initial conditions are rewritten as 
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Subsequently, the use of the Laplace transform technique maps the transient problem into the 

steady one. The differential equations (5) and (6) and the boundary conditions (7) and (8) are 

transformed in conjunction with the initial conditions (9) as 
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, and s is the Laplace transform parameter for time t. 

The present work divides the whole space domain into several sub-space domains. For 

continuities of heat flux and temperature within the whole space domain, the following 

conditions are required at the interface of the sub-space domain j-1, ],[ 1 ii xx  , and the sub-

space domain j, ],[ 1ii xx . 
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where the subscript i is the number of node. n is the total number of nodes. 

In order to perform the derivation of the governing algebraic equations, H
~

 is approximated 

by using the nodal temperatures and shape function within a small sub-space domain. The 

shape function in each sub-space domain is derived from the governing equation (10) with the 

following procedures. 

For the sub-space domain j, ],[ 1ii xx , the analytical solution of the governing equation (10) 

subjected to the boundary conditions 
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are easily obtained and can be written as 
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where   denotes the length of sub-space domain or the distance between two neighboring 

nodes. 

Substituting Eq. (16) and the shape function (19) into Eq. (17) and then evaluating the 

resulting derivative can lead to the discretized form for the interior nodes as following 
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Eq. (20) in conjunction with the discretized forms of the boundary conditions can be 

rearranged as the following matrix equation 
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where  B  is a matrix with complex numbers, }
~

{H  is a column vector in the Laplace 

transform domain, and  F is a column vector representing the forcing term. Thereafter, the 

value of H in the physical domain can be determined with the application of the Gaussian 

elimination algorithm and the numerical inversion of the Laplace transform [11]. 

Results and Discussion 

Some thermal properties of the sample skin are regarded as wb = 0.5 kg/m
3
 s, k = 0.2 W/m 

o
C, 

 = 1000 kg/m
3
 and c = cb = 4200 J/kg 

o
C [11]. The distance between the skin and body core 

is L = 0.01208 m and the value of oH  is specified with 12 
o
C [11]. The values of the other 

parameters are individually determined for each calculation. 

The primary premise of the Pennes bioheat equation is that the blood temperature is to be 

constant arterial blood temperature, and immediately equilibrates(thermally) with the 

surrounding tissue. In substance, the blood temperature undergoes a transient process before 

onset of equilibrium, so the assumption )( bbbb TTGtTc   was made [10]. Figure 1 

shows the temperature variations at x = 0.01 m for the assumptions, )( bbbb TTGtTc   

and Tb = 37
0
C. It is observed that the cooling function of blood is reduced for the assumption 

)( bbbb TTGtTc  , because the blood temperature would be increased from Tbi to the 

tissue temperature T [12]. The variation rates of temperature shown in Fig. 1(a) and Fig. 1(b) 

are obviously different. It expresses that the effect of location significantly affects the 

temperature variation at the measurement point. 
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Figure 1. Temperature variations for the assumptions, )( bbbb TTGtTC   

and Tb = 37
0
C, at  x = 0.01 m. 

 

Figure 2 depicts the temperature variations at x = 0.00208 m for p = 1 and p = 9. It is 

observed from Fig. 1 that the temperature at x = 0.00208 m increases with the time. However, 

Ref. [11] indicated that as the blood temperature is specified as 37 
o
C, the temperature at x = 

0.00208 almost has been in steady state after t = 250 s. This result implies that the cooling 

function of blood will be reduced as the blood temperature undergoes a transient process. In 

this case, the curves of temperature variation for p = 1 and p = 9 are coincident. It implies 

the effect of p is not obvious in the present case. 
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Figure 2. Temperature variations for p = 1 and p = 9 at x = 0.00208 m. 



In order to further explore the effect of p, the perfusion rate of blood is increased from wb = 

0.5 kg/m
3
 s to wb = 1.0 kg/m

3
 s. Figure 3 shows the calculated results with wb = 1.0 kg/m

3
 s 

for p = 1 and p = 9. Two temperature variation curves are coincident. This phenomenon is 

same as that shown in Figure 2. It implies that the effect of p is not strengthened with 

increasing the value of wb in the present problem. The temperature distributions at t = 50 s and 

t = 150 s for p = 1 and p = 9 with wb = 1.0 kg/m
3
 s are also presented in Figure 4. 
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Figure 3. Temperature variations with wb = 1.0 kg/m

3
 s for p = 1 and p = 9 at x = 0.00208 m. 
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Figure 4. Temperature distributions at t = 50 s and t = 150 s for p = 1 and p = 9 with wb = 1.0 

kg/m
3
 s. 



Conclusions 

A numerical scheme based on the Laplace Transform method is proposed for solving the 

Pennes bio-heat transfer equation with transient blood temperature. The results without 

constant blood temperature obviously differ from those with constant blood temperature. The 

effect of p is not strengthened with increasing the value of wb in the present problem. The 

present study depicts that the effects of p and wb are not obvious under that the blood 

temperature undergoes a transient process for heat exchange between blood and tissue. 
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