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Abstract

In the heat treatment process, blood perfusion starts up a negative feedback mechanism. The
blood temperature undergoes a transient process before onset of equilibrium, and then
changes the situation of temperature distribution. In substance, the blood temperature
undergoes a transient process for heat exchange between blood and tissue. For more fully
exploring the heat transfer behavior of biological tissue, this paper analyzes the bio-heat
transfer problem with the non-constant blood temperature based on the Pennes bioheat
equation. A numerical scheme based on the Laplace transform is proposed to solve the bio-
heat transfer problem with simultaneous equations.
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Introduction

Based on experiment analysis, in1948, Pennes[1] proposed the first constitutive relationship
between temperature and the blood flow rate. This relation is popularly known as Pennes'
bioheat equation. The equation includes a special term that describes the heat exchange
between blood flow and solid tissues. Many researchers used it to deal with various problems.
The literature [2, 3] modeled small breast carcinomas surrounded by extended health tissue as
a solid sphere and Investigated the effect of dose on the temperature distribution. Kuznetsov[4]
explored the temperature distribution with a transient thermal dose and investigated the effect
of thermal dose accumulation during cooling. Michelea et al. [5] studied how the infusion
behavior of magnetic nanofluids affects the thermal response in tissue. Lin et al. [6&
numerically studied the bio-heat transfer problem in a bi-layered spherical tissue with bloo
perfusion and metabolism. Kudryashov and Shilnikov[7] used the Pennes bioheat model to
describe he heat transfer in soft tissue durin% the thermal exposure to low temperature. Ma et
al. [8] analyzed the effect of controlling the blood perfusion and temperature into the brain on
brain hypothermia.

It is believed that even the applications with the estimated values do not affect explanation of
the applicability of the bioheat transfer model [9]. For convenience of analysis, therefore, the
above papers [2-8] regarded the blood temperature as a constant. In the heat treatment process,
blood perfusion starts up a negative feedback mechanism. The blood temperature undergoes a
transient process before onset of equilibrium, and then changes the situation of temperature
distribution. In substance, the blood temperature undergoes a transient process for heat
exchange between blood and tissue [10]. For more fully exploring the heat transfer behavior
of biological tissue, this paper analyzes the bio-heat transfer problem with the non-constant
blood temperature. A numerical scheme based on the Laplace transform is proposed to solve
the present problem.

Problem Formulation

Energy conservation equation of bioheat transfer described in the Pennes model is
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Here, p, ¢, and T denote density, specific heat, and temperature of tissue. ¢, and w, are,
respectively, the specific heat and perfusion rate of blood. q,, is the metabolic heat generation
and q, is the heat source for spatial heating. T, is the arterial temperature.

This work considers that the skin surface temperature could be kept constant as the skin
contacts with a large steel plate at a high temperature. The assumption that heat flux
approaches zero deep in tissue x = L was made. The present work defines the heat transport in
the skin with constant physiological parameters as the following equations.
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And then, the he boundary conditions can be written as

T =T and T _
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and the initial conditions

T(x,0)=T,, =0, and q(x,0)=0 4

T (x,0)
ot

where T,; is the initial blood temperature and is specified as 37 °C.

The blood temperature always was assumed to be constant arterial blood temperature for
studying such problems. In substance, the blood temperature undergoes a transient process for
heat exchange between blood and tissue. The transient process was defined by [6]
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where G is the coupling factor between blood and tissue. ¢ is a proportional rate.

Analytical Method

Two new variables H and Tg are defined asH =T —T,; and Tg =T, —T,;. Eq. (2) can be
rewritten for g, =0 as
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The boundary conditions become

H(0,t) =H, (7
OH(LY)
=0 )

The initial conditions are rewritten as



H(x,0)=0,

aHéi"O) 0, and q(x,0)=0 )

Subsequently, the use of the Laplace transform technique maps the transient problem into the
steady one. The differential equations (5) and (6) and the boundary conditions (7) and (8) are
transformed in conjunction with the initial conditions (9) as
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, and s is the Laplace transform parameter for time t.

The present work divides the whole space domain into several sub-space domains. For
continuities of heat flux and temperature within the whole space domain, the following
conditions are required at the interface of the sub-space domain j-1, [X;_4,%], and the sub-

space domain j, [X;, X;,1]-
H,L () =H,(x) i=12,..n;j=i (16)
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where the subscript i is the number of node. n is the total number of nodes.

In order to perform the derivation of the governing algebraic equations, H is approximated
by using the nodal temperatures and shape function within a small sub-space domain. The
shape function in each sub-space domain is derived from the governing_equation (10) with the
following procedures.

For the sub-space domain j, [X;, X;,;], the analytical solution of the governing equation (10)

subjected to the boundary conditions



H () =H, and H (x.,)=H, (18)
are easily obtained and can be written as
|:|j (Xi) = ﬁi and |:|j (Xi+1) = |:|i+1 (18)
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where ¢ denotes the length of sub-space domain or the distance between two neighboring
nodes.

Substituting Eq. (16) and the shape function (19) into Eqg. (17) and then evaluating the
resulting derivative can lead to the discretized form for the interior nodes as following

H,_, —2cosh(A0)H, +H,,, = %[2 — 2cosh(A0)] (20)

Eqg. (20) in conjunction with the discretized forms of the boundary conditions can be
rearranged as the following matrix equation

[BJiH }={F} (21)

where [B] is a matrix with complex numbers, {H} is a column vector in the Laplace
transform domain, and {F}is a column vector representing the forcing term. Thereafter, the

value of H in the physical domain can be determined with the application of the Gaussian
elimination algorithm and the numerical inversion of the Laplace transform [11].

Results and Discussion

Some thermal properties of the sample skin are regarded as wy = 0.5 kg/m®- s, k = 0.2 W/m- °C,
p = 1000 kg/m* and ¢ = ¢, = 4200 J/kg- °C [11]. The distance between the skin and body core
is L = 0.01208 m and the value of H, is specified with 12 °C [11]. The values of the other
parameters are individually determined for each calculation.

The primary premise of the Pennes bioheat equation is that the blood temperature is to be
constant arterial blood temperature, and immediately equilibrates(thermally) with the
surrounding tissue. In substance, the blood temperature undergoes a transient process before
onset of equilibrium, so the assumption gp,c, dT, /ot =G(T —T,) was made [10]. Figure 1

shows the temperature variations at x = 0.01 m for the assumptions, gp,c, 0T, /ot =G(T —T,)

and Ty = 37°C. It is observed that the cooling function of blood is reduced for the assumption
£0,C, 0T, /Ot =G(T —T,) , because the blood temperature would be increased from Ty; to the
tissue temperature T [12]. The variation rates of temperature shown in Fig. 1(a) and Fig. 1(b)

are obviously different. It expresses that the effect of location significantly affects the
temperature variation at the measurement point.
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Figure 1. Temperature variations for the assumptions, ¢p,C, 0T, /ot =G(T —T,)
and Ty = 37°C, at x=0.01 m.

Figure 2 depicts the temperature variations at x = 0.00208 m for 1, = 1 and 1, = 9. It is
observed from Fig. 1 that the temperature at x = 0.00208 m increases with the time. However,
Ref. [11] indicated that as the blood temperature is specified as 37 °C, the temperature at x =
0.00208 almost has been in steady state after t = 250 s. This result implies that the cooling
function of blood will be reduced as the blood temperature undergoes a transient process. In
this case, the curves of temperature variation for 1, = 1 and t, = 9 are coincident. It implies
the effect of 1, is not obvious in the present case.
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Figure 2. Temperature variations for t, = 1 and t, = 9 at x = 0.00208 m.



In order to further explore the effect of 1, the perfusion rate of blood is increased from wy =
0.5 kg/m® s to wy = 1.0 kg/m® s. Figure 3 shows the calculated results with w, = 1.0 kg/m> s
for 1, = 1 and tp, = 9. Two temperature variation curves are coincident. This phenomenon is
same as that shown in Figure 2. It implies that the effect of 1, is not strengthened with
increasing the value of wy, in the present problem. The temperature distributions at t = 50 s and
t=150s for t, = 1 and t, = 9 with w, = 1.0 kg/m® s are also presented in Figure 4.
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Figure 3. Temperature variations with wy, = 1.0 kg/m®. s for 1o =1and tp, =9 at x = 0.00208 m.
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Figure 4. Temperature distributions at t = 50 s and t = 150 s for T, = 1 and tp, = 9 with w, = 1.0
kg/m?®- s.



Conclusions

A numerical scheme based on the Laplace Transform method is proposed for solving the
Pennes bio-heat transfer equation with transient blood temperature. The results without
constant blood temperature obviously differ from those with constant blood temperature. The
effect of 7, is not strengthened with increasing the value of wy in the present problem. The
present study depicts that the effects of t, and wy are not obvious under that the blood
temperature undergoes a transient process for heat exchange between blood and tissue.
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