
 

SMOOTHED POLYHEDRAL VARIABLE-NODE ELEMENTS AND 
THEIR APPLICATIONS 

Seyoung Im*, Seungmin Jin, Jungdo Kim, Hobeom Kim & Chan Lee  
 

Department of Mechanical Engineering, KAIST, 291  
Daehak-Ro, Yuseong-Gu 

 Daejeon, Republic of Korea 
*Presenting and corresponding author: sim@kaist.ac.kr  

Abstract 
The variable-node finite elements (VNEs) are very useful in dealing with mesh discontinuities 
under evolution in adaptive mesh refinement [1], as well as in mechanics problems involving 
physical discontinuities [2-4]. In this paper, a new type of variable-node elements that are 
allowed to take the arbitrary shapes of polyhedra with an arbitrary number of nodes and faces 
are constructed with the aid of the smoothed FEM (S-FEM), and their outstanding 
performance in terms of the accuracy and convergence rate is demonstrated through some 
numerical examples in contact mechanics. 
Keywords: variable-node elements, smoothed FEM, contact mechanics, adaptive mesh 
refinement 

Formulation of smoothed polyhedral variable-node finite elements 

In order to construct the shape functions, the polyhedral element is divided into sub-
tetrahedrons and the implicit shape functions are constructed based on the linear point 
interpolation. In the S-FEM based polyhedral element, the domain is discretized as in the 
conventional finite element, but the integration is conducted by means of the gradient 
smoothing technique [5]. In this integration, additional subdomains, called the smoothing 
domains, are built and the element performance and accuracy is up to how to construct these 
smoothing domains, like the NS-FEM (Node-based Smoothed FEM), the ES-FEM (Edge-
based Smoothed FEM) and the CS-FEM (Cell-based Smoothed FEM) [5]. By the gradient 
smoothing technique, the displacement gradient ∇u  is smoothed, on smoothing domain s
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unit outward normal vector component is p
hn , respectively. Note that the integration can be 

evaluated in the physical coordinate system without a mapping, so that the S-FEM is 
insensitive with respect to mesh distortion and it allows even concave elements. A typical 
example of a polyhedral S-FEM based VNE is shown in Fig.1, wherein the element has the 
eight faces with the individual face centres denoted by green diamonds and the thirteen nodes 
by blue circles. Here CPE0  and CPF0  indicate the element centre and the centre of an element 



face, respectively. The blue tetrahedron shows a typical smoothing subdomain or cell for 
integration when the CS-FEM is adopted. To meet the partition of unity, the shape functions 
at the central point CPE0  of the element and at the face center CPF0  should be given as 
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N nnf=x , where nne and nnf are the number of the nodes on the 

polyhedral element and on the element face under consideration, respectively. Furthermore, 
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the element edges. This information on the shape functions is sufficient for the computation 
of the smoothed displacement gradient or smoothed strain, and so for the computation of the 
stiffness matrix. Therefore, no explicit expressions for the shape functions are required. 

Numerical  Examples 

In order to demonstrate the accuracy and the convergence behaviour of the proposed scheme, 
several numerical examples are presented. For the benchmark problem, a three-dimensional 
cantilever beam subjected to an end-shear load is chosen. The convergence rates of the FEM 
solutions in terms of the relative errors in the energy norm are given in Fig. 2. This shows that 
the NS-FEM and the ES-FEM with hexagonal-prism element model give better accuracy with 
the higher convergence rate than the conventional eight-node hexahedral element. 
The proposed SFEM-based VNEs are useful to construct matching meshes and offer good 
adaptability to complex geometry in practical applications as they offer arbitrary element 
shapes with arbitrary locations of the element nodes. Moreover, they are extremely 
advantageous in non-matching problems. As a three-dimensional example, the two-
dimensional node-to-node contact scheme of ref. [4] is extended to the three-dimensional 
node-to-node scheme, which leads to dramatically improved solutions in accuracy and 
stability than the conventional contact scheme. Note that the polyhedral VNEs are used in this 
contact scheme to transform non-matching meshes into matching meshes on the contact 
interface. 
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Figure 1. A polyhedral element with an arbitrary 
number of nodes or faces. 

Figure 2. The convergence rates of the polyhedral 
VNEs and the conventional hexahedral element in 
the energy norm for the beam under shear load. 

First, a three-dimensional flat punch problem, a hard block subjected to a finite-strain 
compression on a soft basement block, is considered. As shown in Fig. 3(a), the present 
scheme yields better accuracy in terms of the solution convergence for increasing refinement 
than Abaqus solution. Furthermore, the Abaqus iterative process for solution fails to converge 
at the refinement level of a total number of elements greater than 28,825. The difficulty of the 
convergence of the equilibrium iteration is related to the fact that the contact patch test is not 
completely passed for the Abaqus model because of the nonmatching contact interface. As 



noticed in Fig. 3(a), the Abaqus solution for the max. possible refinement of 28,825 elements 
is yet to level off to give the correct load. On the other hand, Fig. 3(a) shows that the solution 
from the present CS-FEM based polyhedral VNE approach has already leveled off before the 
refinement level approximately corresponding to the total 10,000 elements. Second, a hard 
block subjected to a finite-strain compression sliding on a soft slab with friction is considered. 
The contact pressure at the point on the block front edge from Abaqus shows severe 
oscillation with large amplitude, as shown in Fig. 3(b). In contrast, the pressure from the 
present CS-FEM shows much smaller oscillation. 
Note that the preceding approach is very effective also for FSI (Fluid-Solid Interaction) 
problems, wherein the no-slip condition on the interface between the fluid domain and the 
solid domain is of critical importance. The use of the S-FEM based VNEs makes it possible to 
retain the matching mesh throughout the solution by simply adjusting the locations of the 
nodes on the interface. Thus it becomes possible to impose the no-slip condition precisely. 
The computation for some three-dimensional FSI problems are currently ongoing, yet to be 
completed, and will be presented at the conference. 
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Figure. 3. The results for contact problems using polyhedral VNEs (Neo-Hookean mat’l: 
E and ν denote the mat’l constants corresponding to Young’s modulus and Poisson ratio, 
and μ the friction coefficient between the two blocks): (a) convergence behavior of the 
reaction force on the block for the flat punch problem for increasing refinement, (b) the 
contact pressure of the hard block subjected to compression sliding versus the 
horizontal displacement. 

Conclusions 

Through several numerical examples, we have shown that the S-FEM based polyhedral VNEs 
show an excellent accuracy compared with the conventional FEM, and particularly they are 
extremely useful in dealing with the nonmatching meshes encountered in contact mechanics 
and fluid-solid interaction problems.  
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