
Small defining sets in n × n Sudoku squares

†Mohammad Mahdian1 and *Ebadollah S. Mahmoodian2

1Google Research, Mountain View, CA, USA
2Department of Mathematical Sciences, Sharif University of Technology, Tehran, I. R. Iran

*Presenting and Corresponding author: emahmood@sharif.edu

Abstract

Over the last decade, Sudoku, a combinatorial number-placement puzzle, has become a fa-
vorite pastimes of many all around the world. Recently it is shown that this concept has many
mathematical and computational relations and applications. In this puzzle, the task is to com-
plete a partially filled 9 by 9 square with numbers 1 through 9, subject to the constraint that
each number must appear once in each row, each column, and each of the nine 3 by 3 blocks.
Sudoku squares can be considered a subclass of the well-studied class of Latin squares. Actu-
ally a Sudoku square of order n = k2 is a Latin square of order n such that every element in
[n] = {1, . . . , n} appears exactly once in each block. A partial Sudoku square P is a defining
set for a Sudoku square S if S is the unique Sudoku square that is an extension of P . A central
problem is to determine the size of the smallest defining set for Sudoku squares of order n. For
n = 9 (regular Sudoku) extensive computer search showed that this number is 17 (McGuire
et al, 2014), but the asymptotics of this value is unknown. For Latin squares, this number is
conjectured to be ⌊n2/4⌋ (Mahmoodian 1995, Van Rees and Bates 1999). A construction based
on back-circulant Latin squares shows that this number is at most ⌊n2/4⌋, but the best proven
lower bound is just slightly superlinear. Also, the ⌊n2/4⌋ conjecture is proved if “defining set”
is replaced by a more strict notion called “forcing set”.

For Sudoku squares, we show that the same construction (with a permutation on the rows of
the matrix) works, giving an upper bound of ⌊n2/4⌋. We also show that the size of the smallest
forcing set for Sudoku squares of order n is at least Θ(n2). Our conjecture is that the size of
the smallest defining set for Sudoku squares of order n is also Θ(n2). Finally, we discuss open
problems related to Sudoku squares, their defining sets, and the computational complexity of
Sudoku completion.

Keywords: Computation, Sudoku, Latin squares, defining set, forcing set, extension.
Introduction

A Latin square of order n is an n × n matrix with entries from [n] = {1, . . . , n} such that every
element in [n] appears exactly once in each row and in each column.

A partial Latin square of order n is an n × n matrix with entries from [n] ∪ {∗} such that every
element in [n] appears at most once in each row and in each column. A partial Latin square
P1 is an extension of a partial Latin square P2 if for every (i, j) ∈ [n]2, if P2(i, j) ̸= ∗, then
P1(i, j) = P2(i, j).
A partial Latin square P is a defining set for a Latin square L if L is the unique Latin square
that is an extension of P . A critical set is a minimal defining set. A forcing set (also called a
strong critical set) is a partial Latin square P such that there is a sequence P = P0, P1, . . . , Pℓ

such that Pℓ is a Latin square and for every r,

• Pr is a partial Latin square and an extension of Pr−1,

• the difference between Pr and Pr−1 is in precisely one entry, i.e., there is (x, y) ∈ [n]2
such that Pr(i, j) = Pr−1(i, j) for every (i, j) ̸= (x, y) and Pr−1(x, y) = ∗ and Pr(x, y) ̸=
∗, and

• for every z ∈ [n] and z ̸= Pr(x, y), the matrix obtained from Pr by setting Pr(x, y) to z
is not a partial Latin square.

In a Latin square of order n = k2, the (i, j)’th block (for i, j ∈ [k]) is the set of entries with
coordinates in ((i−1)k+x, (j −1)k+y) for x, y ∈ [k]. We say that (i, j) are the coordinates of
this block. These blocks partitions the set of entries in the matrix into n blocks, each containing
n entries. A Sudoku square of order n = k2 is a Latin square of order n such that every element
in [n] appears exactly once in each block. We say that the (i, j)’th block belongs to the i’th row
block and the j’th column block.

Notions of partial Sudoku square, extensions of a partial Sudoku square, defining sets, critical
sets, and forcing sets for Sudoku squares can be defined similarly.

A central problem is to determine the size of the smallest defining set for Sudoku squares of
order n. For n = 9 (regular Sudoku) extensive computer search showed that this number is 17
(McGuire et al [6]), but the asymptotics of this value is unknown. For Latin squares, this number
is conjectured to be ⌊n2/4⌋ (Mahmoodian [5], Bate and Van Rees [1]). A construction based
on back-circulant Latin squares shows that this number is at most ⌊n2/4⌋, but the best proven
lower bound is just slightly superlinear. Also, the ⌊n2/4⌋ conjecture is proved if “defining set”
is replaced by “forcing set”. For Sudoku square, we show that the same construction (with a
permutation on the rows of the matrix) works, giving an upper bound of ⌊n2/4⌋. We also show
that the size of the smallest forcing set for Sudoku squares of order n is at least Θ(n2). Our
conjecture is that the size of the smallest defining set for Sudoku squares of order n is also
Θ(n2). We conclude with the discussion of many Sudoku-related problems that remain open.
Lower bound on the size of forcing sets

In this section, we prove the main result of this paper, which is the following lower bound on the
size of the smallest forcing set in Sudoku squares. This result, combined with the observation
that essentially the same construction as the one for back-circulant Latin squares gives us a
forcing set of size ⌊n2/4⌋ for an equivalent Sudoku square, shows that the smallest forcing set
of Sudoku squares of order n is precisely Θ(n2).

Theorem 1 For every n, the size of the smallest forcing set for Sudoku squares of order n = k2

is at least Ω(n2).

Proof. Let F be a partial Sudoku square that is a forcing set, and consider the forcing order on
the entries not specified by F . Let S denote this ordering, i.e., S1 is an entry that is forced by
F , S2 is an entry that is forced by F ∪ {S1}, and so on.

We start by defining a subsequence S ′ of S as follows: S ′
1 = S1, and for every i > 1, S ′

i is the
first element in S after S ′

i−1 that is not in the same row, the same column, or the same block as
any of S ′

1, S ′
2, . . . , S ′

i−1. In other words, S ′ is obtained from S by removing elements that are in
the same row, same column, or same block. Therefore, the sequence S ′ has at most n elements,
and contains at most one element from each row, each column, and each block of the Sudoku
square.

We now transform S ′ into an ordering of a k×k square. More formally, we define a permutation
π of the set [k]2 as follows: for every i where S ′

i is defined, πi is the coordinates of the block

containing S ′
i. Since S ′ contains at most one element from each block, the πi’s defined based

on S ′
i’s are distinct. There can be blocks with no element present in S ′; we add the coordinates

of such blocks in an arbitrary order to the end of π. This completes the definition of the permu-
tation π of [k]2. The proof of the theorem is based on two lemmas. The first lemma bounds the
size of the forcing set in terms of a quantity associated with the permutation π, and the second
lemma bounds this quantity for every such permutation.

To state the first lemma, we need a few notations. For every permutation π of [k]2 and every
u, v ∈ [k]2 (u ̸= v), we say u ≺π v if u comes before v in π. Let Br

π(v) denote the number of
u ∈ [k]2 such that u ≺π v and u and v are in the same row (i.e., u = (i, j) and v = (i, j′) for
i, j, j′ ∈ [k]). Similarly, let Bc

π(v) denote the number of u ≺π v that are in the same column as
v. Finally, let Bπ(v) = Br

π(v) + Bc
π(v). We are now ready to state the first lemma.

Lemma 1 Let π be the permutation defined based on a forcing set F using the above procedure.
Then,

|F | ≥
n∑

i=1
max(0, n + 1 − 2i − (2k − 2)Bπ(πi)).

Let L(π) denote the quantity on the right-hand side of the inequality in Lemma 1. The second
lemma bounds this quantity for every permutation π.

Lemma 2 There is a constant c such that for every permutation π of [k]2, we have L(π) ≥ cn2.

We start by proving the first lemma.

[Proof of Lemma 1] Let i ∈ [n] be an index for which S ′
i exists. Therefore, πi is the coordinates

of the block containing S ′
i. We argue that to uniquely force S ′

i, we need at least n + 1 − 2i −
(2k − 2)Bπ(πi) new elements in F (i.e., elements other than the ones needed to force S ′

j for
j < i).

Let Ai denote the set of entries of the Sudoku square that are in the same row, same column, or
the same block as S ′

i. The following lemma bounds the cardinality of the intersection of these
sets.

Lemma 3 For every i, j, j ̸= i, if S ′
i and S ′

j are not in the same row block or the same column
block, then |Ai ∩ Aj| = 2. If they are on the same row block or same column block, then
|Ai ∩ Aj| = 2k.

Proof. Proof is easy. Omitted for now.

Since F is a forcing set, by the time S ′
i is forced, there must be at least n−1 entries in Ai whose

values are uniquely specified. We argue that out of these n−1, at most 2(i−1)+(2k−2)Bπ(πi)
are either forced in previous steps or already counted in F , and therefore there must be at least
n + 1 − 2i − (2k − 2)Bπ(πi) of them that are in F and are not previously counted in F . Note
that any entry that is either forced in previous steps or already counted in F must be in Aj for a
j < i. This is because any entry that is forced before S ′

i must either be present in the sequence
S ′

1, . . . , S ′
i−1, or be in the same row, same column, or same block as one of the elements of

this sequence. Either way, this element belongs to
∪

j<i Aj . Also, in each step j < i, we

count elements of F that are used to force S ′
j , and these elements belong to Aj . Therefore, the

number of elements in Ai that either forced before S ′
i or are already counted in F is at most

|Ai ∩ (∪
j<i Aj)|. To bound this cardinality, we use Lemma 3. By this lemma and the definition

of Bπ(πi), the value of |Ai ∩ Aj| is equal to 2k for precisely Bπ(πi) values of j and is equal to
2 for the remaining i − 1 − Bπ(πi). Therefore,

|Ai ∩ (
∪
j<i

Aj)| ≤
∑
j<i

|Ai ∩ Aj| = 2kBπ(πi) + 2(i − 1 − Bπ(πi)).

Therefore, there must be at least max(0, n + 1 − 2i − (2k − 2)Bπ(πi)) elements in F that are
used to force S ′

i and are not counted in previous steps.

Next, we consider i’s for which S ′
i does not exist. Recall that when the length of S ′ is less than

n, we append a list of block coordinates that contain no element of S ′ at the end of π in an
arbitrary order. Therefore πi is the coordinate of a block none of whose elements appears in
S ′. This means that all of the n elements of the block at coordinates πi must either be in F , or
in the same row, column, or block as an element of S ′, since otherwise they would have been
included in S ′. We can now repeat the same argument with Ai replaced by the set of entries in
the block at coordinates πi.

Putting these cases together, we get that in total F must contain at least
∑n

i=1 max(0, n + 1 −
2i − (2k − 2)Bπ(πi)) elements.

Next, we prove Lemma 2, which gives a bound on the quantity L(π) for every permutation π of
[k]2.

[Proof of Lemma 2] Let α ∈ [0, 1] be a parameter that will be fixed later. For convenience we
assume that (1 − α)k/2 (and therefore (1 − α)n/2) is an integer. We use the following lower
bound on L(π):

L(π) ≥
(1−α)n/2∑

i=1
max(0, n + 1 − 2i − (2k − 2)Bπ(πi)).

Since for every i ≤ (1 − α)n/2, we have n + 1 − 2i > αn, the above inequality implies:

L(π) ≥
(1−α)n/2∑

i=1
max(0, αn − (2k − 2)Bπ(πi)).

For every i, we define

L(π, i) =

0 if max{Br
π(πi), Bc

π(πi)} > αn
4k−4

αn − (2k − 2)Bπ(πi) otherwise.

It is easy to see that max(0, αn − (2k − 2)Bπ(πi)) ≥ L(π, i) for every i. Therefore,

L(π) ≥
(1−α)n/2∑

i=1
L(π, i).

Let L′(π) denote the right-hand side of the above inequality. We will show how the permuta-

tion π can be transformed into a structurally simpler permutation π′ such L′(π) ≥ L′(π′). Let
t = ⌊ αn

4k−4⌋. Consider the smallest index i such that max{Br
π(πi), Bc

π(πi)} = t, and assume,
without loss of generality, that Br

π(πi) = t. This means that there are t indices i1, i2, . . . , it = i
such that πiℓ

’s, for all ℓ = 1, . . . , t, are on the same row in [k]2. It is not hard to see that moving
all these πiℓ

’s to the beginning of the permutation does not change the value of L′(π). Further-
more, all other elements of the same row can be added after these elements without increasing
L′(π). Therefore, by moving all entries that are on the same row as πi to the beginning of the
permutation, we obtain another permutation whose L′ value is not more than the L′ value of
the original permutation. We can continue this process, by finding the first index i′ such that
max{Br

π(πi′), Bc
π(πi′)} = t and πi′ is not on the same row as πi. Using the same argument,

depending on whether Br
π(πi′) = t or Bc

π(πi′) = t, elements of the row or column of πi′ (except
possibly the ones that were on the same row as πi) can be moved right after the elements of the
row of πi. Continuing with this process, we can build a permutation π′ such that L′(π) ≥ L′(π),
and π′ has the following structure: it starts with the list of all elements of a row/column of [k]2,
then all elements of another row/column of [k]2 except the ones that have appeared before, and
so on.

What remains is to prove that for a permutation π′ that has the above structure, L′(π′) = Ω(n2).
Using the structure of π′, we can decompose it into segments, where each segment lists all ele-
ments of a row/column of [k]2 except the ones that are listed that are listed in previous segments.
We call a segment a row/column segment, depending on whether it is a list of elements in a row
or a column of [k]2. The value of a segment is the sum of L(π′, i) for all i that belong to that
segment. Let ℓr

j (ℓc
j , respectively) denote the number of row (column, respectively) segments

before the j’th segment. Therefore, if the j’th segment is a column segment, its value can be
written as:

Vj = (αn − (2k − 2)ℓr
j) + (αn − (2k − 2)(ℓr

j + 1)) + · · · + (αn − (2k − 2)t)
= (t − ℓr

j + 1)(αn − (k − 1)(t + ℓr
j)), (1)

if ℓr
j ≤ t. We also have Vj = 0 if ℓr

j > t. If the j’th segment is a row segment, we get a similar
expression for Vj , with ℓr

j replaced by ℓc
j .

Since each segment contains at most k elements, there are at least (1−α)n
2k

= (1−α)k/2 segments
that are entirely contained in the first (1 − α)n/2 elements of π. Therefore, L′(π′) is at least
the sum of the values of the first (1 − α)k/2 segments, i.e., L′(π′) ≥ ∑(1−α)k/2

j=1 Vj . We let
L′′(π′) := ∑(1−α)k/2

j=1 Vj .

The final step is to change π′ to another permutation π′′ (with a similar segmented structure)
such that L′′(π′) ≥ L′′(π′′). We do this as follows: assume, for some j, ℓr

j > ℓc
j and the j’th

segment is a row segment. Find the smallest index j′ ∈ [j, (1 − α)k/2] such that the j′’th
segment is a column segment, if such an index exists. We can write down the difference in the
total L′′ value if we replace the order of the segments j′ and j′ − 1 (i.e., first list all elements
in the column corresponding to segment j′ and then list all elements in the row corresponding
to segment j′ − 1). It is easy to see that the inequality ℓr

j > ℓc
j implies that this swap cannot

increase the L′′ value of the permutation. If such an index j′ does not exist, we can change
the last segment to a column segment. Again, it is not hard to see that the assumption ℓr

j > ℓc
j

implies that this change does not increase the L′′ value of the permutation. Similar statements
hold if we switch the role of row segments and the column segments. By repeatedly using this

procedure, we get a permuation π′′ that consists of alternating row and column segments, and
satisfies L′′(π′) ≥ L′′(π′′).
All that remains is to write down the value of L′′(π′′). This permutation satisfies ℓr

j = ℓc
j =

⌊j/2⌋ for j odd and ℓr
j = ⌊j/2⌋ = ℓc

j + 1 for j even. Using Equation (1), the value of L′′(π′′)
can be written as follows:

L′′(π′′) =
p∑

s=0
(t − s + 1)(αn − (k − 1)(t + s)) +

p∑
s=0

(t − s + 1)(αn − (k − 1)(t + s))

≥ 2
p∑

s=0
(t − s + 1)(αn − (k − 1)(t + s)),

where p = min{t, ⌊(1 − α)k/4⌋}. Recall that t = ⌊ αn
4k−4⌋. Therefore,

L′′(π′′) ≥ 2(k − 1)
p∑

s=0
(t − s)

(
αn

k − 1
− t − s

)

≥ 2(k − 1)
p∑

s=0
(t − s)2 .

If we pick α in such a way that t ≤ ⌊(1 − α)k/4⌋, we have p = t and therefore,

L′′(π′′) ≥ 2(k − 1)t3

3
≥ 2α3k4

3 · 43 .

Now, it suffices to pick any α < 1/2. It is easy to see that this satisfies the inequality t ≤
⌊(1 − α)k/4⌋, and gives us L′′(π′′) ≥ 1

3.44 n2.

The theorem follows by putting Lemmas 1 and 2 together.
Conclusions (Open Problems and Future Directions)

Sudoku is a fascinating source of new interesting open questions in combinatorics. The obvious
open question is whether the result in this paper can be strengthened to defining sets. Our
conjecture is that this is true, i.e., the size of the smallest defining set of Sudoku squares of
order n is Θ(n2). If true, this is probably a difficult problem, since the similar question for
Latin squares has been open for years.

A simpler problem is to strengthen the result to a notion like “semi-strong critical set” ([1]), as
defined similarly to Latin squares. Also, finding any super-linear lower bound is an interesting
open question. Note that in the case of Latin squares, the best lower bounds we know are just
barely superlinear.

As mentioned earlier in the paper, for Latin squares, there is a construction for a defining set of
size ⌊n2/4⌋. This defining set has a unique extension to a back-circulant Latin square. In fact,
it is proved that for even n, this is the smallest defining set of a back-circulant Latin square. It is
not hard to show that by permuting rows and columns of a back-circulant Latin square, one can
obtain a Sudoku square. This gives a construction for a defining set of size ⌊n2/4⌋ for Sudoku.

Two questions remain open: Are there Sudoku squares with smaller defining sets, and are there
smaller defining sets for this particular Sudoku squares. The answer to both of these questions
are conjectured to be negative in the case of Latin squares (and proved to be so in the case of the
second question for n even). For Sudoku, however, these conjectures might not be true, since
the block constraint could reduce the size of the smallest defining set.

There are also many computational open questions arising from the Sudoku puzzle. The first
question is whether the problem of Sudoku completion (given a partial Sudoku square, is there
a completion to a Sudoku square) is NP-hard. Our conjecture, of course, is that it is. A more
difficult problem is the complexity of completing a defining set (i.e., a set that is guaranteed to
have a unique completion) to a full Sudoku square. As a less mathematical problem, it would be
interesting if one can define a measure of difficulty for Sudoku puzzles that roughly correspond
to how hard the puzzle is for humans. An online search reveals many 9 × 9 Sudoku puzzles
that are claimed to be the hardest Sudoku puzzle. It would be interesting to have a quantitative
measure of such puzzles.

Finally, there are many open combinatorial conjectures for Latin squares for which the corre-
sponding Sudoku problem might be more approachable. Two example are two long-standing
conjectures of Brualdi-Stein and Ryser.

Conjecture 1 ([3, 8]) Every Latin square of even order n contains a partial transversal of
length n − 1.

Conjecture 2 ([7]) Every Latin square of odd order contains a transversal.

Another interesting question is whether Galvin’s theorem about list colorability of the Latin
squares ([4]) to Sudoku squares.
References
[1] J. A. Bate and G. H. J. van Rees. The size of the smallest strong critical set in a Latin square. Ars

Combin., 53:73–83, 1999.

[2] Richard A. Brualdi and Herbert J. Ryser. Combinatorial matrix theory, volume 39 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, 1991.

[3] J. Dénes and A. D. Keedwell. Latin squares and their applications. Academic Press, New York,
1974.

[4] Fred Galvin. The list chromatic index of a bipartite multigraph. J. Combin. Theory Ser. B, 63(1):153–
158, 1995.

[5] E. S. Mahmoodian. Some problems in graph colorings. In Proceedings of the 26th Annual Iranian
Mathematics Conference, Vol. 2 (Kerman, 1995), pages 215–218. Shahid Bahonar Univ. Kerman,
Kerman, 1995.

[6] Gary McGuire, Bastian Tugemann, and Gilles Civario. There is no 16-clue Sudoku: solving the
Sudoku minimum number of clues problem via hitting set enumeration. Exp. Math., 23(2):190–217,
2014.

[7] H. J. Ryser. Neuere Probleme in der Kombinatorik (prepared by D.W. Miller). Vortrage uber
Kombinatorik, pages 69–91, 1967. (cited in [2]).

[8] S. K. Stein. Transversals of Latin squares and their generalizations. Pacific J. Math., 59(2):567–575,
1975.

