
 

Minimum volume of the longitudinal fin with rectangular and triangular 

profile by a modified Newton-Raphson method 
Nguyen Quan¹, †Nguyen Hoai Son2, and Nguyen Quoc Tuan2 

1Department of Engineering Technology, Pham Van Dong University, Viet Nam. 
2GACES, HCMC University of Technology and Education, Vietnam 

†Corresponding author: sonnh@hcmute.edu.vn 

Abstract 

The minimum volume of nonlinear longitudinal fin with rectangular and triangular profile by 

using the modified Newton-Raphson method is present in this paper. The dimension of the fin 

profile is regarded as optimization variables. Furthermore, a mechanism called “volume 

updating” is added into the modified Newton-Raphson algorithm to obtain the minimum 

volume of the fin. Two examples are illustrated to demonstrate the proposed method. The 

obtained results showed that the proposed method use efficiently and accurately in finding the 

minimum volume of the nonlinear longitudinal fin problem with the rectangular and triangle 

profile. 
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Introduction 

Fin or extended surface is used widely in various industrial applications when we want to 

improve the convective heat transfer from a hot surface where cooling is required [1]. The use 

of fins increases the volume or mass of systems and rise the costs of production. 

Consequently, the optimization of fins for light weight and high efficiency and compact heat 

exchanger system is of great interested and have been done in the past several decades.  

 

Fin optimization problems can be divided into two approaches. The first approach of 

optimization problem is to select a simple profile (i.e. rectangular or triangular) and then 

determine the dimensions of fin so that either maximize the heat transfer rate for a given 

volume or minimize the volume of fin for a specified heat dissipation. In the second approach, 

the shape of fin is determined so that the volume of the material used is minimum for a given 

heat loss. The criterion for this second approach of fin optimization problems was first 

proposed by Schmidt [2]. For purely conduction and convection fins, the author suggested 

that the minimum volume of the optimization fins is a parabolic shape. Unfortunately, the 

parabolic profiles of optimization fin in the second approach are curved surface with zero tip 

thickness which is too complex and expensive to manufacture. Thus, the first approach of 

problems is more relevant and important than the second type of problems. 

 

In fact, the rectangular and triangular profiles are widely used in the heat exchanger system 

due to the ease of fabrication. As a result, more studies have been performed to determine the 

optimal size of these types. Under the assumption constant thermal parameters, negligible 

effects of heat transfer from the tip, and approximation of one-dimensional heat transfer 

equation, the optimization of rectangular and triangular profiles is treated in the book by 

Kraus [1]. Aziz [3] published an article which present a literature survey on optimum 

dimension of this object. Aziz [4, 5] optimized the rectangular and triangular fins with 

convective boundary conditions and presented the optimum design of a rectangular fin with a 

step change in cross-sectional area under the constant thermal parameters. Under the variable 

thermal parameters, Yu [6] studied the optimization of rectangular by applying Taylor 



transformation method. Recently, by using the differential transformation method, Poozesh 

[7] presented the efficiency of convective-radiative fin with temperature-dependent thermal 

conductivity. In Poozesh’s paper, the effects of convection-conduction parameter, thermal 

conductivity parameter and the radiation-conduction parameter on efficiency of fin are 

considered and discussed. For a bi-dimensional analysis, Kang [8, 9] estimated the optimum 

dimension of annular fins with rectangular profile under thermally asymmetric convective and 

radiating condition as well as optimized an annular trapezoidal fin using a new approach to a 

two-dimension analytical method. However, these above researches were performed based on 

the analytical method under assumption of constant thermal parameters. The drawback of 

analytical methods is that they cannot solve the general non-linear fin design problem. 

However, none of previous published papers however propose the effective methods to 

minimize the volume of rectangular and triangle fins for general non-linear fin design 

problem until now.  

 

In this paper, a proposed an effective method is presented to find the minimum volume of 

longitudinal fin of rectangular and triangular profiles for general high non-linear fin design 

problem based on modified Newton Raphson method (MNR). A mechanism called as 

“volume updating” is added in MRN algorithm to obtain the minimum volume of optimum 

fin. The potential and feasibility of applying MNR as an optimization method on the fin 

problems will be demonstrated in this work. 

Problem Statement 

Consider a longitudinal symmetric fin model with rectangular and triangular profiles as 

Figure 1, in the steady state condition, the general heat transfer equation without internal heat 

source for the two-dimensional model given by the semi-cross-section of the natural 

convection and radiation cooled fin takes on the following forms: 
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where T is the unknown temperature field over the cross-section domain of fin, k is the heat 

thermal conductivity, Ab is the fin cross section area at the base, flowq  is the inward total heat 

loss at the base, h is the convective heat transfer coefficient,  is emissivity coefficient,  is 

Estefan-Boltzmann constant, T  and surT  is the ambient and surrounding temperature  

 



 
 

Figure 1. The longitudinal fin with rectangular and triangular shape 

 

respectively, and n is the exterior normal vector of the convective surface. In general, the 

coefficients k, h,   are constant or functions of temperature. 

 

When the shape of fin and all boundary condition is known and given, the temperature field of 

fin and the base temperature could be estimated by solving the non-linear fin design problem 

(Eqs.(1-4)). This direct problem is solved by the finite element method (FEM) [10].  

The Optimization Problem 

Modified Newton Raphson 

In this paper, the purpose of optimization process is to minimize the volume of the 

longitudinal fins of rectangular and triangular profiles for a given heat loss and the specified 

base temperature. Therefore, the dimensions of fin profiles are regarded as optimization 

variables. For this two-dimensional geometric problem, the dimension of fin is determined by 

the length and width of fin. We will thus have 2 optimization variables for both of rectangular 

and triangle profiles as shown in Figure 2. Besides, to remain the continuity during the 

optimization process, the position of control points must satisfy the following conditions: 
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Figure 2. The profile of fins and their optimization variables: a) rectangular fin; b) 

triangular fin 
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MNR method [11] is used to find out the minimum volume by finding the optimal position of 

control points. The proposed method directly formulates the problem from two comparisons 

between the calculated and the expected temperature at the base, and between the calculated 

and expected volume of the fin. Therefore, the expected base temperature 
i

xT and the expected 

fin volume xV  are necessary to be given first; the calculated temperature i

cT  and the 

calculated fin volume 
cV  are evaluated from direct problem. Then, the estimation of optimal 

fin shape can be recast as the solution of a set of nonlinear equations as following: 
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where, M is the number of the temperature equation which is obtained from the base. As a 

result, there are M+1 equations in Eq. (6).  

 

The characteristic of fin is that the fin width compared to the fin length is very small. 

Therefore, the variation of the base temperature along with the width of fin could be 

neglected. Consequently, the expected temperature at the base would be assigned to one 

expected value. Furthermore, since the value of fin volume is very small compared to the base 

temperature, the volume value is converted into the temperature value so that the influence of 

fin volume and base temperature in Eq. (6) is the same. Subsequently, Eq. (6) can be re-

written as following: 
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where, 
xpcdT  is the expected temperature at the base and ˆ

cV is the converted volume given by: 
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The detail procedure to solve Eq. (7) can be shown as following: 
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where, ˆ
cT is the component of vector T . 

The optimization variables are set as following: 
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where, x and y are the dimensions of the fin (as Fig. 2),  ˆ
v is the component of vector χ  

The derivative of  ˆ
c  with respect to  ˆ

v  is can be expressed as following: 
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where, S is the sensitivity matrix. 

With the above derivatives from Eq. (6) to Eq. (11), we have the following equation: 
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where,   is the factor to adjust the step size of kΔ  so that the constraints of Eq. (5) are 

satisfied. 

 



From Eq. (9), it is claimed that the solution can be achieved when the base temperature and 

the appropriate volume of fin is given. However, the minimum volume of the fin is unknown 

prior and is the optimization goal. To solve this problem, an approach called “volume 

updating” is added into the modified Newton Raphson algorithm. This approach is based on 

“curve fitting” mechanism of the modified Newton Raphson method. In this mechanism, the 

obtained solution is the best approximation which is defined as that which minimizes the sum 

of squared differences between the computed and expected value. As a result, in Eq. (9), the 

larger value of N is, the closer solution to the expected temperature compared to the expected 

volume is. Consequently, “volume updating” approach is performed as following: 

 

Step 1: Set a large value for M and guess a small initial value of fin volume.  

Step 2: Use Eqs. (9-13) to find the best solution. 

Step 3: Update the new volume obtained from the best solution of step 2 and return to step 1. 

Step 4: Terminate the process if the stopping criterion is satisfied. 

The stopping criteria 

The modified Newton Raphson method from Eq. (11) to Eq. (15) is used to determine 

the optimal location of the control points which are presented as the unknown variables,  .  

The step size kΔ  goes from kχ to 1kχ  and it is determined from Eq. (16). Once kΔ  is 

calculated, the iterative to determine 1kχ is executed until the stopping criterion is satisfied. 

There are two stopping criteria used in the proposed method. One is for updating the volume 

and another is for modified Newton Raphson method. Base on the discrepancy principle [12], 

the volume would be updated when both of two criteria are satisfied as following: 
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and the stopping criteria is given by 

 c x xT e T T  (16) 

or 
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where, e  and   are small positive value known as the convergence tolerances. 

Computational Algorithm 

The procedure for the proposed method can be summarized as following: 

Given overall convergence tolerance e  and   , the initial control point 0χ  , the initial volume 

of fin 0

xV  , and the adjusting factor   (say  1   in the present work). The value kχ  is 

known at the iteration as following: 

 

Step 1: Solve the direct problem Eqs. (1-4), and compute cT . 

Step 2: Integrate cT with xT  through Eq. (9) to construct T . 

Step 3: Calculate the sensitivity matrix S  through Eq. (11). 

Step 4: Knowing S  and T , calculate the step size kΔ  from Eq. (12). 

Step 5: Calculate 1kχ through Eq. (13). 



Step 6: If condition of Eq. (5) is not satisfied, replace 0.1   and return to step 5. 

Otherwise, accept the new control points 1kχ and set 1   again. 

Step 8: Update the fin volume if the updating criterion Eq. (14) is satisfied, and replace k  by 

1k   and return to step 2. 

Step 9: Terminate the process if the stopping criterion Eq. (16) or Eq. (17) is satisfied. 

Otherwise, replace k  by 1k   and return to step 2. 

Results and Discussions 

In this section, two cases with the triangular and rectangular profile of the longitudinal fin are 

deal with to demonstrate the proposed method. The two-dimensional model will be 

considered in two cases. Additionally, the optimal results by the proposed method are 

discussed and compared with the theory results by Kruas [1]. The longitudinal fin with the 

height of fin of 0.2[m]H   and the thermal conductivity of 58.3[W/mK]k  is considered in 

two cases. It is assumed that our purpose is to find the minimum volume of the fin so that the 

fin can dissipate a given heat flow of 20[ ]Q W with the base temperature of 400[ ]bT K  in 

the surrounding ambient with the temperature 300[ ]aT K . The convective heat transfer 

coefficient is considered to be constants and obtained from Eq. (18) by Dobaru [13] as 

following: 
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where, all the fluid properties are computed at a mean temperature, ( ) / 2m b aT T T  . With the 

given thermal parameters above, the mean convective heat transfer coefficient is 
25.2564 [W/mK ]h  .  
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Figure 3. The temperature distribution along the length of the optimal fin for triangle 

profile. 

 



Table 1. The geometrical parameters of the optimal fin by MRN method and theoretical 

results for the triangle profile 

Dimension of optimum fin 
Theoretical 

Results 
The proposed Method 

The length, x[m] 1.6022 1x e   1.6020 1x e   

The semi-width, y[m] 1.3498 3y e   1.3503 3y e   

The min volume, V[m3] 4.3255 5V e   4.3265 5V e   

 

Table 2. The relative difference of fin geometrical parameters between MRN method 

and theoretical results for the triangle profile 

Dimension of  

optimum fin 
Error (%) 

The length, %x 0.01% 

The semi-width, %y 0.04% 

The min volume, %V 0.023% 

 

In Case 1, a fin design problem with triangular profile of the longitudinal fin is considered. 

For optimization procedure by MNR, the value of updating and stopping criteria used were 
410   and 410   respectively. The initial volume is 

0 34 5( )xpcdV e m  . The initial 

dimensions of the triangular profile fin are 0 0.3[ ]x m  and 0 0.001[ ]y m . In this case, the 

optimal results obtained by the proposed method and the theory optimal results are shown in 

Table 1. The relative difference of the geometrical parameters of the optimal fin between the 

theoretical values and MNR’s results are also shown in Table 2. Furthermore, the temperature 

distribution along the length of the optimal triangular fin is presented in Figure 3. 

As shown, with specified thermal properties and given boundary conditions above, the 

minimum volume of the optimal triangular fin is about 4.325 5V e  . The optimal length of 

triangular fin is about 0.16[ ]x m  and the optimal semi-width triangular fin is about 

1.35 3[ ]y e m  . Table 2 show that the relative error of the geometrical parameters of the 

optimum fin between MRN method and the theoretical is small. The relative error for the 

minimum volume is 0.23% and that for the length and semi-width are 0.01% and 0.04% 

respectively. This mean that the results obtained by the proposed method satisfied the given 

condition and are in high agreement with the theoretical values. 

Table 3. The geometrical parameters of the optimal fin by MRN method and theoretical 

results for the rectangle profile 

Dimension of  

optimum fin 

Theoretical 

result 

The proposed Method 

2D model 

(no tip 

convection) 

2D model 

(tip 

convection) 

The length, x[m] 1.5178 1x e   1.5179 1x e   1.5022 1x e   

The semi-width, y[m] 1.0313 3y e   1.0313 3y e   1.0350 3y e   

The min volume, V[m3] 6.2613 5V e   6.2614 5V e   6.2188 5V e    

 

 



Table 4. The relative difference of fin geometrical parameters between MRN method 

and theoretical results for the rectangle profile 

Dimension of  

optimum fin 

The proposed Method 

2D model 

(without convective tip) 

2D model 

(convective tip) 

The length, %x 0.02% 1% 

The semi-width, %y 0% 0.3% 

The min volume, %V 0.0016% 0.68% 
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Figure 4. The temperature distribution along the length of the optimal fin for the 

rectangle profile. 

 

In Case 2, the fin design problem with the rectangular profile is investigated. In this case, the 

initial dimensions of the rectangle fin are 0 0.2[ ]x m  and 0 0.001[ ]y m . Two cases of 

convective tip and insulated tip are considered in this case. Table 3 showed the optimal results 

achieved by the proposed method and the theoretical formulation. Table 4 illustrated the 

relative deviation of the geometrical parameters of the optimal rectangular fin between 

MNR’s method and theoretical formulation. In addition, the temperature distribution along 

the length of the optimal rectangular fin is drawn in Figure 4. 

 

The obtained results showed that there is good approximation between the optimal result by 

MNR’s method and theoretical method for the case of insulated tip. Particularly, the 

minimum volume the case of insulated tip is about  36.26 5[ ]V e m   for both of the theory 

method and the proposed method. The length and semi-width of the optimal rectangular fin 

are respectively about 1.52 1[ ]x e m   and about 1.03 3[ ]y e m   with the very small relative 

deviation between the methods (as Table 4). For the case of the convective tip, the minimum 

volume of optimal fin is about 36.22 5[ ]V e m  . As shown in Table 4, the value of the 

optimal rectangular fin volume with the convective tip is 0.68% less than that with the 

insulated tip. This is due to the face that the consideration of convective tip leads the increase 

of heat dissipation comparing with the assumption of the insulated tip. Thus, the volume of 

the optimal rectangle fin with the convective tip is less than that with the insulated tip. 

 



With the obtained results from two cases, it can be said that the proposed method is potential 

and feasible in finding the minimum volume of the optimum fin with rectangular and 

triangular profile. Furthermore, the proposed method does not depend on the type of the direct 

problem (linear or non-linear direct problem). In the other words, the proposed method can be 

utilized in finding the minimum volume for any fin design problems with rectangular and 

triangular profile. 

Conclusions 

In this work, the minimum volume of the longitudinal fin with the rectangular and triangular 

profile for the given heat flow and the expected temperature at the base by using the modified 

Newton Raphson method was presented. A mechanism called as “volume updating” was 

added in the proposed algorithm to obtain the minimum volume of the optimum fin. Two 

cases with the rectangle and triangle profile were performed to validate the proposed method. 

The obtained results by MNR’s method have been compared with the results of Kraus [1]. 

The results showed that the values of the volume of the optimal fin are in good agreement 

with that of Kraus [1] in all two cases. In the other words, it can be declared that the proposed 

method is an efficient and accurate method to find the minimum volume of the optimal fin 

with triangle and rectangle profile for the given heat flow and the expected temperature at the 

base. Furthermore, the proposed method does not depend upon the type of the direct problem. 

Thus, this method can be applied for any linear or non-linear fin design problem. 
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