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ABSTRACT

A new type of smoothed finite element method, F-barES-FEM-T4, is demonstrated in static large deformation hypere-

lastic and elastoplastic cases. F-barES-FEM-T4 combines NS-FEM-T4 and ES-FEM-T4 with the aid of F-bar method

in order to resolve all the major issues of Selective ES/NS-FEM-T4: limitation of material models, pressure oscillation,

and corner locking. As well as other S-FEMs, F-barES-FEM-T4 inherits displacement-based formulation and thus has

no increase in DOF. Moreover, the cyclic smoothing procedure introduced in F-barES-FEM-T4 is effective to adjust the

smoothing level so that pressure oscillation is suppressed reasonably. A few examples of analyses for rubber-like hyper-

elastic and elastoplastic materials proof the excellent performance of F-barES-FEM-T4 in contrast to the conventional

hybrid elements.

Keywords: Smoothed finite element method, F-bar method, Large deformation, Cyclic smoothing, Pressure oscillation,

Locking-free.

Introduction

In the practical use of the finite element method (FEM) for complex shapes, analyses with tetrahedral meshes are indis-

pensable. However, the standard 4-node linear (constant strain) tetrahedral (T4) element has many accuracy issues such

as shear locking. Especially when the incompressibility arises in rubber-like or plastic materials, it also suffers from vol-

umetric locking and pressure oscillation issues. Due to the poor performance of the standard T4 element, there have been

many researches on the advanced FE formulations of tetrahedral elements.

The hybrid 10-node quadratic (2nd-order) tetrahedral (T10) elements [1] generally represent good results; however, they

have accuracy and convergence problems in severe large deformation analysis or contact analysis because of the presence

of intermediate nodes. The hybrid T4 element [1] is also used late years but has accuracy issues [5, 6] and brings significant

increase in the degree of freedom (DOF) as well. An alternative approach to this problem is the smoothed finite elements

methods (S-FEMs) [3]. Selective ES/NS-FEM-T4 [3, 4] would be one of the current best S-FEM-T4 formulations; yet,

it still has three major issues: limitation of material models, pressure oscillation, and corner locking [5]. Recently, we

proposed a new type of S-FEM-T4 formulation called F-bar aided edge-based smoothed finite element method (F-barES-

FEM-T4) [6]. As the adoption of the F-bar method [2] to combine NS-FEM-T4 and ES-FEM-T4 [3], F-barES-FEM-T4

is able to resolve all the major issues of Selective ES/NS-FEM-T4.

In this study, the effectiveness of F-barES-FEM-T4 in static large deformation analyses is demonstrated not only in

rubber-like hyperelastic cases but also in elastoplastic cases. Plastic deformation in progress generally decreases the

shear modulus drastically and thus presents near incompressibility, thereby inducing volumetric locking and pressure

oscillation frequently. A few examples of analyses show that F-barES-FEM-T4 is locking-free and pressure oscillation-

free in elastoplastic analyses as well as in nearly incompressible hyperelastic analyses.

Methods

The presenting method, F-barES-FEM-T4, takes advantages of ES-FEM-T4 and NS-FEM-T4 by combining them with F-

bar method [2]. The conceptual illustration of F-barES-FEM-T4 is shown in Fig. 1. In F-barES-FEM-T4, the isovolumetric

part of the deformation gradient (Fiso) is evaluated by using ES-FEM-T4, whereas the volumetric part (Fvol) is evaluated



by using NS-FEM-T4 multiply. Combining Fiso and Fvol with F-bar method, the final deformation gradient F is given at

edges in the same manner as ES-FEM-T4.

A brief explanation of F-barES-FEM-T4 is described later in this section. See reference [6] for the detail.

Calculation of EdgeF̃iso

The isovolumetric part of the deformation gradient at each edge, EdgeF̃iso, is given in the same manner as ES-FEM-T4.
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Calculation of EdgeFvol

On the other hand, the volumetric part of the deformation gradient at each edge, EdgeFvol, is given by the cyclic smoothing

procedure as follows.

i. Calculate ElemF and ElemJ at each element in the same manner as the standard FEM-T4:
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ii. Calculate the smoothed J at each node, NodeJ̃, in the same manner as NS-FEM-T4:
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Figure 1. Conceptual illustration of F-barES-FEM.



iii. Calculate the smoothed J at each element, ElemJ̃, as follows:
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where Elem
eN is the set of four nodes comprising element e.

iv. Repeat ii. and iii. c times and obtain the multiply smoothed J at each element, ElemJ. Note that Elem
eJ is regarded as

Elem
e J̃ in the second or later evaluation of Eq. (6). Also, Elem

e J̃ is regarded as Elem
eJ in the last evaluation of Eq. (7).

v. Calculate the multiply smoothed J at each edge, EdgeJ, in a similar fashion as ES-FEM-T4:
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vi. Calculate the multiply smoothed Fvol at each edge, EdgeFvol:
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where I is the unit tensor.

Note that Eq. (6), (7) and (8) satisfy the partition of unity condition and thus the near incompressibility of rubber-like

materials is satisfied at the multi-smoothing domain of each edge.

The number of cyclic smoothing, c, is the tuning parameter of F-barES-FEM-T4. F-barES-FEM-T4 with c-time cyclic

smoothing is referred to as “F-barES-FEM-T4(c)” hereafter in this paper.

Calculation of EdgeF

The final deformation gradient at each edge, EdgeF, is obtained by combining EdgeF̃iso of Eq. (1) and EdgeFvol of Eq. (9)

with F-bar method.
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Calculation of EdgeT

The Cauchy stress at each edge, EdgeT, is then derived in the standard way with EdgeF. In case of history-dependent

materials such as elastoplastic materials, EdgeT is derived with the history of EdgeF.

Calculation of Edgef int

The contribution of each edge to the nodal internal force, Edgef int, is calculated in manner of the F-bar method as
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Note that the stretching tensor in this equation, EdgeD̃, is not the deformation rate of
Edge

h
F in Eq. (10) but that of

Edge

h
F̃ in

Eq. (2).

Results

Barreling of Hyperelastic Cylinder

A hyperelastic large deformation analysis of a 1/8 cylinder with enforced displacements is performed. Figure 2 illustrates

the outline of the analysis. Barreling deformation grows as the enforced displacement progresses, and then the lateral



surface is squeezed out. The material constitutive model of the cylinder is the neo-Hookean hyperelastic model, T =

2C10
Dev(B)

J
+ 2

D1
(J − 1)I, where C10 = 4× 107 Pa and D1 = 5× 10−11 Pa−1 and thus the initial Poisson’s ratio is 0.499. The

mesh seed size is 0.05(= 1/20) m constant for 1st-order elements and is 0.1(= 1/10) m constant for 2nd-order elements.

Firstly, results of 4-node hybrid tetrahedral element of ABAQUS/Standard (ABAQUS C3D4H), 10-node quadratic mod-

ified hybrid tetrahedral element (ABAQUS C3D10MH), and 8-node hybrid hexahedral element (ABAQUS C3D8H) are

shown in Figs. 3–5. ABAQUS C3D4H is free from shear and volumetric locking; however, it has two major issues: pres-

sure oscillation and corner locking [5]. The corner locking is a type of locking that brings a strangely hard deformation

around corners in large deformation cases. ABAQUS C3D10MH is free from shear, volumetric, and corner locking; how-
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Figure 2. Outline of the hyperelastic barreling analysis.

Figure 3. Pressure distributions of ABAQUS C3D4H results. Left: uz = 0.01 m. Right: uz = 0.40

m.

Figure 4. Pressure distributions of ABAQUS C3D10MH results. Left: uz = 0.01 m. Right: uz =

0.32 m.



ever, it suffers from convergence failure in a relatively earlier stage. Moreover, the presence of intermediate nodes causes

accuracy loss of interpolation in large deformation cases. ABAQUS C3D8H is also free from shear, volumetric, and corner

locking; however, it suffers from pressure oscillation.

Secondly, results of Selective ES/NS-FEM-T4, F-barES-FEM-T4(1), (2), (3) and (4) are shown in Figs. 6–10. Selective

ES/NS-FEM-T4 and all F-barES-FEM-T4s are free from shear and volumetric locking and have no convergence problem.

Selective ES/NS-FEM-T4 and F-barES-FEM-T4(1) have pressure oscillation and corner locking issues, whereas F-barES-

FEM-T4(2) or later suppresses these issues. It should be noted that F-barES-FEM-T4(2) or later are not much different

each other and thus c is not much sensitive to the result. Therefore, F-barES-FEM-T4 with a sufficient cycles of smoothing

c resolves all the accuracy issues of conventional methods.

Figure 5. Pressure distributions of ABAQUS C3D8H results. Left: uz = 0.01 m. Right: uz = 0.40

m.

Figure 6. Pressure distributions of Selective ES/NS-FEM-T4 results. Left: uz = 0.01 m. Right:

uz = 0.40 m.

Figure 7. Pressure distributions of F-barES-FEM-T4(1) results. Left: uz = 0.01 m. Right: uz =

0.40 m.



Shear-Tensioning of Elastoplastic Bar

An elastoplastic large deformation analysis of a bar with enforced displacements is performed. Figure 11 illustrates the

outline of the analysis. Shear deformation dominates at the middle part of the bar in the early stage of the analysis, whereas

stretch deformation dominates in the later stage. The material constitutive model of the bar is the elastoplastic model with

Hencky’s strain measure, von Mises yield criterion, and the isotropic hardening flow rule. The material properties are 1

GPa Young’s modulus, 0.3 Poisson’s ratio, 1 MPa yield stress, and 0.1 GPa constant work hardening rate. Hence, the

Poisson’s ratio under large plastic deformation in progress is greater than 0.48. The mesh seed size is 0.2(= 1/5) m

constant.

Results of ABAQUS C3D4H and F-barES-FEM-T4(2) are shown in Fig. 12 and 13. Figure 12 compares the deformations

and distributions of the equivalent plastic strain, while Figure 13 compares those of the pressure. The results of ABAQUS

Figure 8. Pressure distributions of F-barES-FEM-T4(2) results. Left: uz = 0.01 m. Right: uz =

0.40 m.

Figure 9. Pressure distributions of F-barES-FEM-T4(3) results. Left: uz = 0.01 m. Right: uz =

0.40 m.

Figure 10. Pressure distributions of F-barES-FEM-T4(4) results. Left: uz = 0.01 m. Right: uz =

0.40 m.



C3D4H represent strange spatial oscillation on both the equivalent plastic strain and pressure distributions. On the other

hand, the results of F-barES-FEM-T4(2) are smooth in the both distributions and thus seem valid. F-barES-FEM-T4 is

considered effective not only for rubber-like materials but also for elastoplastic materials.
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Figure 11. Outline of the elastoplastic shear-tensioning analysis.

(a) ABAQUS C3D4H (b) F-barES-FEM-T4(2)

Figure 12. Comparison of equivalent plastic strain distributions on the elastoplastic shear-

tensioning analysis.



Conclusion

A new type of smoothed finite element method, F-barES-FEM-T4, is demonstrated in static large deformation hyperelastic

and elastoplastic problems. The characteristics of F-barES-FEM-T4 are summarized as follows.

• No increase in DOF.

• No limitation of material models.

• No convergence problem in large deformation.

• Free from shear, volumetric, and corner locking.

• Suppress pressure oscillation in rubber-like/elastoplastic materials.

• Adjustable smoothing level with the number of cyclic smoothings (c).

(a) ABAQUS C3D4H (b) F-barES-FEM-T4(2)

Figure 13. Comparison of pressure distributions on the elastoplastic shear-tensioning analysis.
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