
Extending a 3D Parallel Particle-In-Cell Code For Heterogeneous Hardware

*Grischa Jacobs1, Thomas Weiland2 and Christian Bischof3

1Graduate School of Computational Engineering, TU Darmstadt, Darmstadt 64293, Germany
2Computational Electromagnetics Laboratory (TEMF) , TU Darmstadt, Darmstadt 64293, Germany

3Scientific Computing, TU Darmstadt, Darmstadt 64293, Germany

*Presenting author: jacobs@gsc.tu-darmstadt.de

Abstract

An evaluation for a parallel Particle-In-Cell code leveraging heterogeneous hardware is pre-
sented. Hybrid parallelization is implemented to support optional workload offloading to 40
Intel R© Xeon PhiTMcoprocessors. A performance model is applied to load balance the parti-
cle data for this heterogeneous setup. Performance measurements of a benchmark show the
speedups for the balanced and unbalanced cases and the execution without the coprocessor.
The code computes particle-field interactions in the time domain, typically used in plasma or
particle physics. A multi beam gun is chosen as a benchmark. The gun uses an electrostatic field
to accelerate the particles and a magnetostatic field, generated by a current driven coil to focus
the particle beam. Calculated results are compared with CST Particle Studio [11]. For solving
the electrodynamic and electrostatic fields, described by the coupled MAXWELL equations, a
3D solver has been implemented, facilitating the Finite Integration Technique (FIT) [1].
Keywords: High Performance Computing, Intel Xeon Phi, Particle-In-Cell

Introduction

Modern HPC systems provide diverse processor architectures, making efficient parallel com-
puting a difficult task. Keeping the physical limitations with high clock speed rates and energy
consumptions of processors in mind, the attractiveness of modern multicore processors be-
comes obvious. To leverage their benefits, hybrid parallelization strategies become necessary.
As the variety of heterogeneous computing systems will increase in the future, this motivates
investigations for realistic performance and scalability models to explore potentials for code
optimizations and load balancing strategies. Typically used in computational accelerator and
plasma physics, Particle-In-Cell (PIC) simulations calculate the movement of free charges in
electromagnetic fields. Solving those physics requires a solution of the coupled MAXWELL

equations

∇× ~E = −∂
~B

∂t
, ∇· ~B = 0,

∇× ~H = ∂ ~D

∂t
+ ~J, ∇· ~D = ρ,

(1)

and the relativistic NEWTON-LORENTZ equation

∂~u

∂t
= q

m0c

(
~E + ~v × ~B

)
,

∂~r

∂t
= ~v,

~u = γ
~v

c
,

(2)

where ~u is the normalized momentum and q,m0, ~r, ~v represent charge, rest mass, position and
velocity of particles. As equations 1 and 2 lead to separate computations within this approach
those are referred as computational kernels.

3D Particle-In-Cell Simulation

As moving charges describe a current in eq. (1), a cyclic dependency needs to be solved for
every time step. This is shown in figure 1. To solve the fields numerically, the Finite Integration
Technique (FIT) [1] is implemented. For further information about FIT the reader is referred
to [1] for the general theory and to [4] for a setting with PIC. For the time integration of the
fields a leap-frog scheme is chosen. For the integration of eq. (2) the well known Boris scheme
is used. Charge conservation is ensured by using an algorithm described in [5]. The following
subchapters will provide a coarse overview. The basic kernels of the PIC method are: (1) Calcu-
lating the dynamic electromagnetic fields in time domain with eq. 1 (”field” kernel). (2) Gather
all static and dynamic field values at particle positions (”gather fields” kernel). (3) Integrate
particle trajectories for one time step (”push” kernel). (4) Calculate currents introduced by the
charge movement and scatter those (”scatter current” kernel). The costs of these kernels depend
on the problem setting in terms of particles per cell, particle distribution and the sizes of the
computational mesh.

Figure 1: The left figure shows the sequential steps of the Particle-In-Cell algorithm. Each
loop calculates one physical time step. The right figure explains the offloading to the
Intel R© Xeon PhiTMaccelerator card. Only the particle trajectory and current calculations
are offloaded to the card.

Field Solver

The field solver facilitates FIT. The FI discretization scheme is related to the well known Yee
scheme and based on a dual grid-doublet {G, G̃}, which decomposes the computation domain
into two sets of dual cells. Integral quantities _q, _e and

__

b are defined on the grid G, correspond-
ing to the total charge in the cell volumes, to the electric voltage along the cell edges and to the
magnetic induction flux on the cell facets, respectively. Electric voltage _e is defined by∫

Lv(i,j,k)
~E(~r, t) · ~ev dv = _ev(i, j, k). v ∈ {x, y, z} (3)

The integral quantities
__j ,

__

d and
_

h are the vectors of charge current, electric displacement flux
and magnetic voltage defined on the facets and edges of the dual grid G̃. Fig. 3 illustrates
the allocation of the electric voltage in the case of rectangular dual grids G and G̃. Using these
integral quantities, Maxwell’s equations in discrete form, the so-called Maxwell-Grid-Equations
are obtained:

C _e = − d

dt

__

b, (4a)

C̃
_

h =
__j + d

dt

__

b, (4b)

S̃
__

d = q. (4c)

The support matrix operators {C, S} and {C̃, S̃} defined on G and G̃ are discrete mappings
of the differential ”curl” and ”div”. The operators C, S, C̃ and S fulfill the identities SC =
CS̃T = 0 and S̃C̃ = C̃ST . This corresponds to the continuum relations div curl = 0 and
curl grad = 0. The discretization approximation enters FIT through the constitutive material
equations

__

d = Mε
_e ,

_

h = Mµ−1
__

b and
__j = Mσ

_e. (5)

Particle Solver

The particle solver models groups of particles ”macroparticles” using a ballistic approach by
solving eq. (2). Solving it requires a three step process: 1. interpolating E and B fields in the
center of the macroparticle within one cell by choosing an interpolation with at least order one.
2. Solving eq. (2) with the a method proposed by Boris [5] using the interpolated field values of
step (1). Note that solving this equation is not trivial as of the term ~v× ~B. 3. Calculating current
densities induces by the particle movement, with the equations 6 for the 2D case as shown in
figure 2. Bunemann et. al. [2] describe how to solve this with rigorous charge conservation.

Q (ϑ, η)

0
0 1

1

ϑ

η

~ra

~rb

~v
__

j η1

__

j η2

__

jϑ2

__

jϑ1

Figure 2: Macroparticle moving in a 2D cell.
As the particle is moving it creates currents
on the edges of the cell.

G̃

G

Q

__ex

Figure 3: Illustrates the allocation of fluxes
and voltages in the case of rectangular dual
grids G and G̃.

The currents in figure 2 for the 2D case are calculated by:

__

jϑ1 = Q · ϑ2 − ϑ1

4t
·
(

1− η1 + η2

2

)
__

jϑ2 = Q · ϑ2 − ϑ1

4t
· η1 + η2

2 (6a)

__

j η1 = Q · η2 − η1

4t
·
(

1− ϑ1 + ϑ2

2

)
__

j η2 = Q · η2 − η1

4t
· ϑ1 + ϑ2

2 (6b)

Integration in the Time-Domain

The time domain equivalent to the FI Method is the well known FDTD scheme of leapfrog
integration. Applied to the time dependent equations (4) this procedure is restricted by the
Courant–Friedrichs–Lewy stability criterion on the time step length

4t ≤ 4tmaxCFL. (7)

For the time integration an explicit forward time difference scheme is used. The corresponding
update relation is

_

h (m+1) = _

h (m) − 4t Mµ−1 C̃ _e (m+ 1
2) + O(4t2) , (8a)

_e (m+ 3
2) = _e (m+ 1

2) + 4t Mε
−1

(
C̃

_

h (m+1) −
__j (m+1)

)
+ O(4t2). (8b)

Integrating the particle trajectories is straight forward. Replacing the differential operator in eq.
(2) with a central differential quotient will lead to a numeric representation. Again a leapfrog
scheme for the integration of ~r and ~u is used.

un+1/2 = un−1/2 + 4t · Q

m0 · c
· (En + vn ×Bn) , (9a)

rn+1 = rn + 4t · c

γn+1/2 · u
n+1/2 (9b)

Eq. (9a) cannot be solved explicit as of ~v. Changes in the velocity ~v will also effect the normal-
ized momentum ~u. For this reason eq. (9a) is split into three steps as suggested by Boris [5].
First the momentum gets calculated over half a time step by

u− = un + 4t
2 · Q

m0 · c
· En, (10)

second a rotation is calculated according to the LORENTZ force over a full time step

u∗ = u− + u− ×T, (11a)

u+ = u− + u∗ × 2 ·T
1 + |T|2

, (11b)

T = 4t · Q ·Bn

2 ·m0 ·
√

1 + |u−|2
. (11c)

Finally the momentum gets calculated over the lasting half time step

un+1 = u+ + 4t
2 · Q

m0 · c
· En. (12)

Parallel Particle-In-Cell

In this work Intel R© Xeon PhiTMcoprocessors are evaluated for the parallelization of the PIC
method. The existing parallel PIC code facilitates distributed and shared memory parallelization
using MPI and OpenMP. The code is build on top oh the PETSC framework [10] supporting
sophisticated MPI data structures to be used. The Intel R© Xeon PhiTMcard has been chosen
instead of a GPU card, as the the existing OpenMP code may be easy to offload.

Strategies for Parallelization

To minimize the overall runtime, a suitable parallelization strategy needs to be chosen. Such
a strategy may be influenced by application specific properties, e.g. different particle distri-
butions or geometry resolutions and by hardware specific properties such as vectorization in
CPU’s, multicore systems and coprocessors. Two strategies for distributed memory PIC paral-
lelization have been investigated in the context of accelerator physics (e.g. beam simulation)
[6], [7], [8] and [9]:
1.) The whole computational domain is decomposed by the number of computing nodes avail-
able. Every node calculates the DOF’s for the fields and the trajectories for the particles, that
are moving within the domain assigned to the node. Hence only uniform particle distributions,
where every node calculates an equal number of particles, benefit from this strategy.
2.) Only the field DOF’s are spatially distributed to the nodes, whereas the particle calculations
are equally distributed independent from their position. This guarantees an equal workload for
every node, with the drawback of additional communication costs. This strategy is characterized
by a satisfying weak scaling behaviour, but may not be the fastest solution.

Shared Memory Parallelization / Offloading to Coprocessors

Using one Intel R© Xeon PhiTMcoprocessor with 60 effective cores, each with four hardware
threads, the ”field” kernel can make use of the (theoretical) high memory bandwidth and the
”push” and ”current” kernels can leverage the highly concurrent SIMD nature of the particle
calculations using up to 240 hardware threads available on the card. The coprocessor can be
used in two different modes. A ”native mode” where the executable gets compiled to run on the
coprocessor as a standalone MPI process and a ”offload mode” that enables offloading selected
kernels that benefit from the multicore architecture. Due to the memory limitation of 8 GB main
memory for the smaller Intel R© Xeon PhiTM5110P card and the fact that not every computational
kernel can benefit from the shared memory scalability of the coprocessor (e.g field solver), the
”native mode” is not evaluated in this work. In the benchmark used for evaluation, the computa-
tions of the particle solver takes up to 80% of the overall time to compute one physical time step,
suggesting that particle integrations and current density calculations are offloaded to the Xeon
PhiTM coprocessor, whereas the field computations and all MPI communications are exclusively
performed on the host. As the communication to the coprocessor over PCIe is one bottleneck,
this work evaluates only the second parallelization strategy mentioned above making benefit
of the fact that particle data will stay on the coprocessor across all time step calculations, thus
PCIe traffic is reduced. In order to calculate on the coprocessor in parallel with the host, an
asynchronous offload with OpenMP 4.0 LEO is implemented. This way only one thread of the
host executes the offloading procedure to the coprocessor, whereas the remaining n− 1 threads
of the host are facilitated to compute the particle movement and current calculations.

Performance

In this work performance is defined as ”time-to-solution”. From a performance bottleneck
perspective computational kernels can be classified as memory bounded and CPU bounded.

Evaluating the code showed, that both the ”field” kernel and the ”push” kernel tend to be to
memory (bandwidth) bounded.

Performance Modeling

In some cases it might be inefficient to offload computations to a coprocessor, as the time for
sending and receiving data from the coprocessor makes the speedup for calculation neglectable.
Therefore a performance model, on the basis of a model proposed by Kredel et.al. [3], is
introduced predicting performance achieved by the PIC code. Further performance prediction
creates space for robust load balance strategies. By counting all floating point operations #opj
as well as the number of network bytes exchanged #xj by kernel j, taking the communication
bandwidth bk into account and measuring floating point operation per second lkj for each node
k the performance is estimated by

tk ≤
Kernel∑
j=0

#opj
lkj

+
Kernel∑
j=0

#xj
bk

. (13)

The parameters #opj and #xj describe the software performance where as bk and lkj are hard-
ware representatives. Software parameters can be derived from the code by hand or with mea-
surements by sweeping all parameters (e.g. mesh and particle size). As it is intended to model
a system with one host and one Intel R© Xeon PhiTMcoprocessor the effective bandwidth for the
communication between those needs to be measured as shown in figure 7. For large data sizes
(> 30MB) the bandwidth for sending and receiving may differ by up to one dimension. As the
offloaded kernels are running in parallel on the host and on the coprocessor, the performance is
estimated by

tk ≤ max
[
w1op1

l11
,
w2 ∗ op1

l21
+ w2 ∗ xsend

b2
send

+ w2 ∗ xrecv
b2
recv

]
(14)

where the max operator describes the parallel execution, as the slower system will degrade the
performance. The sum of the performance of the ”push” and ”current” kernels, executed by
the host, is denoted by l11,2 and the operation count by op1,2. For the coprocessor those are
denoted by l21,2 and op1,2, respectively. As the bandwidth for sending and receiving data from
the coprocessor differs, two terms modeling the data transfer are added. As it is intended to
perform load balancing, two scalar weights are added, w1 and w2. The sum of both weights
must be equal to one.

Optimization for Accelerator

In order to get the code running efficiently on the coprocessor some optimizations are carried
out. When calculating current density values by the ”current scatter” kernel after the movement
of the particles, those values are stored in a hash map where the key is the face index in the com-
putational mesh, of the face the particle has crossed. This is done by every thread for all particles
those threads are responsible for and merged in the end. Reading and writing to 240 hash maps
on the coprocessor, each controlled by one thread, is decreasing the performance in an order
of one dimension compared to the performance of the host with 16 threads. Using the concur-
rent unordered map provided by Intel Thread Building Blocks library [13] the performance is
improved to be competitive with the host’s performance. The data of particles and fields trans-
mitted from the host to the coprocessor and current data transmitted from the coprocessor to the
host is communicated over PCIe 2, having a peak bandwidth of 6 GB/s as shown in figure 7. To
achieve high communication speeds the environment variable MIC USE 2M BUFFERS of the
coprocessor is set to 2 MB.

Architectural Testbed

The Lichtenberg cluster [12] located at Technische Universität Darmstadt, has 647 computing
nodes available for various applications and provides an accelerator section that with 24 nodes,
configured to be used with 48 Intel R© Xeon PhiTMcoprocessors (two cards each node). Every
host node has two sockets with one Intel R© Xeon R© Processor E5-2670 having 8 cores, hy-
perthreading disabled and 32 GByte main memory. Each core runs on 2.6 GHz. Nodes in this
section are connected with 1x FDR-10 InfiniBand. Two nodes provide Intel R© Xeon PhiTM7120P
coprocessors whereas the remaining 22 nodes provide Intel R© Xeon PhiTM5110P coprocessors.
The Intel R© Xeon PhiTMcoprocessor 5110P has 8GB main memory, 59 effective cores each with
four hardware threads, 1.05 GHz clock speed and a theoretical peak memory bandwidth of 320
GB/s. This system is used to evaluate the speedup achieved by PIC code when incorporating
Intel R© Xeon PhiTMcoprocessors.

Results

0 10 20 30 40 500

20

40

60

d: 13.23s
c: 14.23s
b: 9.21s
a: 11.01s

d: 7.16s
c: 7.15s
b: 3.15s
a: 3.05s

Processes (each 8 * OpenMP threads)

Ti
m

eS
te

p
[s

]

a) Without MIC
b) With MIC
c) MIC LB 2
d) MIC LB 3

0 10 20 30 40 50

20

40

60

80
1 ∗ 106 DOF
1 ∗ 107 particles

20 ∗ 106

20 ∗ 107

Processes (each 8 * OpenMP threads)

Ti
m

eS
te

p
[s

]

Without MIC
With MIC
MIC LB 2
MIC LB 3

Figure 4: Execution times to compute one
physical time step. The overall problem
size is fixed (106 DOF and 107 particle),
whereas the number of MPI processes is
increased. Each computing node executes
two MPI processes, as each MPI process
has one Intel R© Xeon PhiTMcard. The blue
line shows measured times without the
support of coprocessors. Green line shows
measured times with support of the copro-
cessors. Red and black line show execution
times with particle load balancing, using
the ratios of 1:2 and 1:3 between the host
and the coprocessor.

Figure 5: Execution times to compute one
time step. The problem size per MPI pro-
cess is constant (106 DOF and 107 parti-
cle), whereas the number of MPI processes
is increased. Each computing node exe-
cutes two MPI processes. The blue line
shows measured times without the support
of coprocessors. Green line shows mea-
sured times with support of the coproces-
sors. Red and black line show execution
times with particle load balancing, using
the ratios of 1:2 and 1:3 between the host
and the coprocessor.

As a benchmark problem, a multi beam particle source of a particle accelerator is chosen. The
benchmark is provided by CST [11]. It simulates multiple electron beams with free movement
in a constant electric and magnetic field and perfect electric conducting boundaries. The mag-
netic field is generated by a current driven coil to focus the beam. The problem size is designed

to meet the main memory limitations of one computing node in the accelerator supported section
of the Lichtenberg cluster, calculating 10 million DOF for the mesh and 100 million particles
on one node. Scaling up to 20 nodes a problem with 200 million DOF and 2 billion particles is
solved.

101 102

101

102

103

Threads

Ti
m

eS
te

p
[s

]

CPU-MPI 1
CPU-MPI 2
Intel Phi

103 104 105 106 107 108 109 1010
0

1

2

3

4

5

6

7

Bytes

B
an

dw
id

th
[G

B
/s

]

Send
Receive

Figure 6: Execution time for ”push” and
”current” kernels calculating 5 ∗ 106 par-
ticles with a varying number of threads.
Red line shows the execution times of
the offloaded kernels on Intel R© Xeon
PhiTM5110P. A speedup of 2-3 against the
hosts execution is measured. Blue line
shows the execution on the host with one
MPI process and varying threads. Green
line shows the execution on the host with
two MPI processes and varying threads.

Figure 7: Showing measured bandwidth
values when communicating with an Intel R©

Xeon PhiTM5110P coprocessor. The blue
line shows performance for received data,
whereas the green line shows the band-
width measured when data was sent. Both
measurements can be fittet with spline
functions.

Speedup and Execution Time

Three studies are carried out to evaluate the speedup achieved with the coprocessors. A study
evaluating strong scalability shown in figure 4, where the problem size is constant and the num-
ber of parallel units is increased, a weak scalability study, where the problem size increases
linearly with the number of parallel units, shown in figure 5 and a study measuring the shared
memory scalability shown in figure 6. All measurements shown are executed with two MPI
processes per node, each running 8 threads in parallel. This way each MPI process makes use
of one Intel R© Xeon PhiTMcoprocessor, as one node holds two cards. Also the performance for
one MPI process running on one node with 16 threads is measured, but only for the setup where
no coprocessors were used. Each figure shows time values in seconds measured when execut-
ing one physical time step. This physical time step is calculated by the sequential execution
of each computational kernel in parallel by all MPI processes. The values are mean values of
ten physical time steps measured. Four setups are configured and shown in both figures 4 and
5. The blue line (”w/o MIC”) shows measurements were the code is executed without a co-
processor, whereas the green line (”w MIC”) incorporates the coprocessors. The red and black

lines are setups, where the number of particles calculated by the host and the ones calculated
by the coprocessor are load balanced by the ratio 1:2 and 1:3, respectively. From figure 4 one
can infer that using two coprocessors reduces the time to compute one physical time step by
up to 56% compared to a host only execution with one MPI process, and a reduction of 23% is
achieved compared to a host only execution with two MPI processes. One can also derive that
the support of the coprocessor gets insignificant as the number of particles per MPI process gets
to small, as measured with 16 and 40 MPI processes in figure 4. Having a constant problem
size on each node, as shown in figure 5, the benefit of the coprocessors becomes noticeable, as
a mean runtime reduction of 39% for the load balanced setup is measured. Figure 6 shows the
scalability of the ”push” and ”current” kernels, when increasing the number of threads, having
the problem size kept fixed. The blue line plots a setup where the code is executed without the
coprocessor using one MPI process and a varying number of threads, whereas the green line
shows measurements for a setup with two MPI processes executed in parallel on one node. The
red line plots the time the coprocessor (Intel R© Xeon PhiTM5110P) needs to execute both kernels.
Calculating the same number of particles on both accelerator cards, the performance difference
between the smaller and the bigger accelerator card is negligible. In figure 6 it is also shown that
calculating the same number of particles with the same number of threads on the host and on
the coprocessor, the host system exceeds the coprocessors. This may be caused by the different
core cache architectures, bigger caches sizes and the existence of L3 caches on the host. As the
coprocessor can scale up to 240 threads (the Intel R© Xeon PhiTM5110P only to 236 threads) a
speedup between 2 and 3 can be measured compared to the host with 16 threads running. The
speedup of the host saturates at 8 threads.
According to Intel, the pinning of threads onto the cores can have a major performance impact.
Table 1 shows measurements for various thread affinity setups. Scatter, balanced and compact
affinity settings are evaluated when 59, 118, 177 and 236 threads are used. Balanced and scat-
tered thread distributions lead to similar execution times, whereas compact distribution tends to
be slower. Using 236 threads all affinity settings show similar results.

Figure 8: CAD model of the multibeam
particle source created in CST Particle
Studio [11]. The red structure is a cur-
rent driven coil generating a magnetostatic
field. The ring structure has 8 particle
sources.

Figure 9: Particle-In-Cell multi beam
benchmark simulating electron beams with
free movement in a constant magnetic field
and perfect electric conducting bound-
aries. The benchmark is calculating 10 mil-
lion DOF for the mesh and 100 million par-
ticles on one node.

Table 1: Thread affinity on xeon Phi 5110P

KMPAFFINITY 59 118 177 236

granularity=fine, scatter 22.74s 12.75s 9.85s 8.29 s

granularity=fine, balanced 22.82s 12.81s 9.89s 8.16s

granularity=fine, compact 29.40s 15.06s 10.39s 8.16s

Conclusion

Performance measurements are presented evaluating ”time-to-solution” with 40 Intel R© Xeon
PhiTMcoprocessors incorporated executing a parallel Particle-In-Cell code. It is shown that the
on-node performance is improved by 56% for realistic problem sizes, when controlling the
balance of data that is computed on the host and on the coprocessor with a load balancing
strategy. Therefore an analytical performance model is used and evaluated for the host and the
coprocessor.

Acknowledgment

The work of Grischa Jacobs is supported by the ’Excellence Initiative’ of the German Federal
and State Governments and the Graduate School of Computational Engineering at Technische
Universität Darmstadt.

References
[1] Thomas Weiland, A discretization method for the solution of Maxwell’s equations for six-component

fields, Electronics and Communication, Vol.31, p116-121, 1977.

[2] John Villasenor and Oscar Buneman, Rigorous charge conservation for local electromagnetic field
solvers, Computer Physics Communications, 69:306-316, 1992.

[3] Heinz Kredel, Sabine Richling, Jan Philipp Kruse, Erich Strohmaier, Hans-Günther Kruse, A simple
concept for the performance analysis of cluster-computing, Supercomputing, 165-180, 2013.

[4] U. Becker, T. Weiland, Particle-in-Cell simulations within the FI-Method, Surveys on Mathematics
in Industry, Vol.8, No.3-4, pp.233-242, 1999.

[5] Boris, J.P., Relativistic plasma simulation-optimization of a hybrid code, Proceeding of Fourth Con-
ference on Numerical Simulations of Plasmas, November 1970

[6] F. Wolfheimer, E. Gjonaj, T. Weiland: A parallel 3D Particle-In-Cell (PIC) with dynamic load bal-
ancing. Nuclear Instruments and Methods in Physics Research (NIM), Vol. 558, pp. 202-204, 2006

[7] E. A. Carmona, L. J. Chandler, On parallel PIC versatility and the structure of parallel PIC ap-
proaches, Concurrency: Practice and Experience, Vol.9(12), pp.1377-1405, 1997.

[8] Ji Qiang, Xiaoye Li, Particle-field decomposition and domain decomposition in parallel particle-in-
cell beam dynamics simulation, Computer Physics Communications, Vol. 181, Issue 12, 2010.

[9] A. C. Elster, Parallelization issues and particle-in-cell codes, PhD Book, 1994.

[10] S. Balay et. al., Efficient Management of Parallelism in Object Oriented Numerical Software Li-
braries, Modern Software Tools in Scientific Computing, Pages 163-202, 1997.

[11] ”CST Software”, https://www.cst.com/

[12] ”Lichtenberg cluster”, http://www.hhlr.tu-darmstadt.de/hhlr/index.en.jsp

[13] ”Intel Thread Building Block”, https://www.threadingbuildingblocks.org/

