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Abstract 

Complex dynamical systems such as car body, aircraft fuselage or train coach are conveniently 
modeled with Finite Element Method (FEM) in the Low Frequency range (LF). Increasing the 
frequency range to Mid-Frequencies (MF), typically up to 1000-2000 Hz, requires larger and larger 
FEM mesh. Presently, MF fluid/structure interaction problems on large structures cannot be solved 
in decent time at engineering level. Reduction of model size is required especially under random 
distributed loads. Energy methods like Statistical Energy Analysis (SEA) provide a theoretical 
framework for building small models based on power-balanced- equations they can be run in High 
Frequency range (HF). Nevertheless, SEA parameters are derived from analytical solutions of 
differential operators and submitted to many assumptions and simplifications. They cannot provide 
robust enough prediction in MF range due to inherent complexity of industrial systems. 

To improve predictability of energy models, the relevant parameters are then identified by inverse 
method from the “statistical” dynamic information contained in side FEM model. The FEM-
derived SEA models are called Virtual SEA models (VSEA). They use the same parameters than 
the classical “analytical” SEA models. VSEA parameters can then be directly compared to their 
analytical counterparts. VSEA models may be understood as compressed FEM models in which 
the narrow-band frequency and spaced-varying FEM dynamic is replaced by band-integrated 
frequency and spaced averaged dynamic applied to a partition of FEM domain into subsystems. 
This compression leads to very small models while minimizing the information depredation. For 
example car body-in-white dynamic described by 6 million DoF’s in FEM is encapsulated as a 
real-valued 50x50 matrix relating injected power from impressed forces to energy in each of the 
subsystems. Problems involving random loads can then be solved by using VSEA models rather 
than original FEM’s. VSEA models can also be complemented by analytical other subsystems such 
as fluid cavities to solve full vibroacoustic response involving airborne and structure-borne 
propagation paths. Outputs from VSEA models are also more easily interpreted and provide 
description of propagation paths in the system.  

Keywords: Statistical Energy Analysis, SEA, Virtual SEA, VSEA, Computational Dynamic, 

Propagation path.  

Introduction 

SEA [1] has been and is still a very popular method in vibroacoustic engineering to predict random 
vibrations and fluid –structure interaction over a broadband frequency range. SEA describes the 
interaction of subdomains of a given dynamical systems in term of energy through a set of power-
balanced equations. To build a valid SEA representation of the actual vibrational state, the system 
needs to be partitioned into subsystems and coupling coefficients calculated with appropriate 
physical laws. Some restrictive assumptions such as “weak” subsystem coupling must also be 
fulfilled. The three latter tasks have been for a long time the drawback of the SEA method due to 
lack of guidance in constructing models of complex systems. The use of analytical dynamical 
operators for computing SEA parameters was also limiting engineers in their ability to handle the 
structural complexity. 



Nevertheless over years, despite all these obstacles, SEA method has been successful in predicting 
responses of a large class of industrial systems but generally with lack of control over frequency-
band modeling limit and variance. From early 2000th’s SEA modeling capabilities have been 
leveraged up over Mid-Frequency (MF) by relying on Finite Element Method (FEM) to provide 
more robust SEA representation using FEM derived-parameters. This technology called Virtual 
SEA (VSEA) has enlightened the general dynamical behavior of complex systems, leading as side 
effects to improvement of equivalent analytical modeling rules always required for extending 
VSEA results above the frequency limit of the FEM mesh. There are theoretical connections with 
the parallel development of stochastic FEM modeling over the MF range [2][17]. 

The SEA Power Equilibrium 

A given dynamical system is partitioned into two subsystems for easier presentation. Between the 
resulting two subsystems, a set power-balanced equations Eq. (1) traduces the conservation of 
energy. Power flowing into a subsystem, from either a local source or arising from another coupled 
subsystem, is, for a fraction, dissipated into the subsystem and for another fraction, sent back to 
the coupled subsystem. 
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1 1E , 2 2E  are the vibrational energies dissipated by subsystem 1 and 2. 
12 12 1 21 2/ c E E      is 

the net power flow between subsystems expressed as the difference of radiated energies from 1 to 

2 and 2 to 1 and 
21 12   . 

1  and 2  terms represent the injected power by external random loads in resp. subsystem  and 2 

over a frequency band of width B centered around radian frequency 
c .  

1  and 2  are the mean modal Damping Loss Factors of the subsystems (or DLF) and 12 , 21  the 

Coupling Loss Factors between related subsystems (CLF). 

Under external random impressed loads, the subsystem vibrational energy is related to the 

frequency and spaced-averaged mean squared velocity 2v  times the subsystem mass:  

 2E m v    (2) 

Injected power due to random loads is independent of the modal subsystem response. Therefore, 

knowing DLF and CLF, we can build a loss matrix relating injected power vector to energy vector 

and calculate the energies in function of injected power in the band B:  
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For Eq. (3) being a valid representation of the actual energy exchange between the two subsystems, 

impressed powers 1 and 2  need to be uncorrelated. For describing the energy exchange between 

two continuous bounded subsystems (two plates or a plate and an acoustic cavity), the concept of 

modal energy is introduced. In a band B, the continuous subsystem is statistically described by a 

set of modal oscillators carrying modal energy. If N oscillators are resonating in B, the statistic 

modal energy is equal to /E N  where E is the sum of the N modal energies. Considering two 

set of modal oscillators resonating in B with respectively N1 and N2 number of resonance 

frequencies in B, SEA states that the net power flow between the set is expressed by Eq. (4). 



  12 1 2 1 2N N       (4) 

It leads the symmetrical SEA power-balanced equations given by Eq. (5). 
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Off-diagonal terms are equal due to reciprocity relationship,
1 12 2 21N N , making the loss matrix 

symmetrical as the modal coupling coefficient   is always symmetrical due to linearity of 

dynamical operators. 

The modal formulation of SEA provides an easier interpretation of the “weakly” coupled 

assumption. Under this assumption, the subsystem modes can be considered as an acceptable 

orthonormal basis for projecting its responses and the related total energy is then found much closer 

to the discrete sum of modal energies. If subsystems 1 and 2 are strongly coupled, their modes are 

hybridized and undistinguishable with non-null cross-correlated energy E12. 

The further required assumption of “weak” coupling between subsystems has been discussed for a 

long time among SEA community and it is only recently that the role of this requirement has been 

clarified: Eq. (4) is always valid as soon as we restrict the calculation of energy to resonant modes. 

But on one hand, in case of more than two coupled subsystems, CLF law coupling related 

oscillators is different from the weak coupling case and on the other hand, all subsystems are found 

cross-coupled together, independently they are connected or not on a physical boundary. 

The degree of physical coupling between thin shells, parts of a complex system, is generally 

decreasing with frequency as any small discontinuity of mass or stiffness in the system will 

generate growing reflection coefficient when frequency increases (i.e. wavelength decreases). It 

leads to progressive confinement of energy in localized subdomains of the dynamical system. 

Confined energy is thus stored in local modes of the subsystems creating energy gaps between 

subdomains and SEA representation given by Eq. (4) and Eq. (5) will start to work and calculated 

CLF can be restricted to near-by coupled subsystems. As a consequence, there is always some cut-

off frequency under which SEA scheme will be found defective. 

The EDM Power Equilibrium 

When subsystems are strongly coupled, power flow is no more discontinuous as in Eq. (4) as the 

distribution of energy density within the union of subsystems is continuous function of space. The 

Energy Diffusion Method (EDM) demonstrates [4][5][6] that in a continuous uniform system of 

extension   the conservation of energy between subdomains   is given by the following energy-

based equation: 
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where cg is the group velocity of underlying propagating waves and e the energy density in the 

medium.   is the mean DLF in the medium in which is assumed perfect diffusion of the vibrational 

field. The local intensity is found proportional to the gradient of energy density: 
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The coefficient 
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
 plays then the same role than the coefficient of thermal transfer in heat 

exchange problems. 

SEA and EDM Power Flows 

A large fluid cavity is now considered containing many acoustic modes and its volume is split into 

smaller cavities. SEA is assuming weak coupling between subsystems. Therefore such an SEA 

model cannot represent actual distribution of energy in the volume as obviously the coupling is 

expected to be very strong between two neighboring sub-volumes as their boundaries are not at all 

reflective. To illustrate it, an acoustic volume (12m x 1m x 1m) is split into two different partitions. 

For comparison of calculated local energies, two SEA models are built from the partitions with 

sub-volumes cross-coupled by the “regular” SEA CLF. 

Partition C6 is made of 6 sub-volumes (2m x 1m x 1m each) while partition C12 is made of 12 

sub-volumes (1m x 1m x 1m) as sketched in Figure 1.  

  

Figure 1. Two SEA partitions of the same acoustic volumes and number of modes per 1/3rd 

octave band in the two related elementary sub-volumes 

 

Figure 2. Pressure levels in first and last acoustic sub-volumes in C6 and C12 partitions for 

unit power injected in resp. C6-1 and C12-1 

Elementary sub-volumes are all including at least one acoustic resonance from 200 Hz. When 

applying a unit source power in the first left volumes, we expect to find similar pressure level at 

right ends of both partitions. Sub-volumes are numbered C6-1, C6-2… for partition C6 and C12-

1, C12-2… for partition C12. Figure 2 shows pressure levels calculated in both models in first and 



last sub-volumes. For C12 volumes, the two first and the two last are graphed as they are half-sized 

compared to C6 corresponding volumes. By doubling the number of sub-volumes to mesh the total 

volume, predicted pressure in C12 drops down from about 25 to 30 dB at 20 kHz and of about 10 

dB around 2 kHz. The predicted pressure level is found dependent on mesh size (i.e. to the number 

of subsystems used to describe the volume). 

Same exercise may be done in any SEA software method and will lead to similar result if CLF are 

computed from wave transmission method. 

In this particular example of serial energy transfer within an arbitrary partition of an acoustic 

volume, weak coupling assumption is not verified. Therefore the volume meshing is not consistent. 

EDM provides a more representative model to describe the actual energy transfer based on a 

different power flow formulation. For computing CLF, classical SEA method, as originally 

proposed [1] - and still applied in the community of SEA users - relies on wave theory and weak 

coupling. At subsystem boundary, the power flow from an emitter subsystem to a receiver one, is 

then given by: 

 1 2 12 1 incE I


        (8) 

Where 


  is the mean random-incidence wave transmission coefficient, incI  is the incident 

intensity propagating from 1 to 2 and  the junction size (area for 3D acoustic volumes). Because 

4
inc

c
I e  in the diffuse acoustic field, e being the energy density, Wave Transmission (WT) CLF 

is found equal to: 
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For two identical coupled sub-volumes, the net power flow is finally expressed in function of WT 

CLF as: 
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where is L=/ is the characteristic length of the sub-volumes and 


 =1 as no refection occurs 

at sub-volume interface. 

Comparing Eq. (10) and Eq. (7), both net power flow expressions are found proportional to the 

gradient of energy (or energy density with appropriate scaling). But the coefficients of vibrational 

transfer that relates the gradient of energy to power are following different laws vs. frequency. 

Therefore, in any complex dynamical system, the energy distribution over the domain is expected 

to be continuous over sub-domains with low reflective boundaries between them and submitted to 

step when crossing a reflective boundary. Because the reflectivity of a boundary is frequency-

dependent when speed of sound slightly varies between two coupled sub-domains, we have a better 

understanding of Figure 2 result: the discretization of an acoustic volume into sub-volumes coupled 

by WT CLF implicitly creates artificial loss of energy at each boundary and leads to a larger energy 

drop in the last cavity. This effect is a consequence of applying WT CLF between strongly-coupled 



regions. Fluid-structure interaction problems are less entailed by this problem as fluid and structure, 

at least for air, are always weakly coupled. 

SEA method based on WT-CLF is not representative of actual dynamical behavior in analyzing 

structure borne noise propagation over the MF range when speed of sound between the various 

parts is not very different as in the case of car body-and-white where the skin is everywhere 

between 0.7 to 1 mm thick with low reflectivity from boundaries. 

Over MF range, for improving robustness of SEA modeling, WT CLF should be only applied for 

coupling regions separated by steep energy gradient while continuous regions with smooth gradient 

should be either considered as a single SEA subsystem or split into smaller scale subsystems 

coupled by EDM modified CLF. Figure 3 shows the prediction with an SEA model with a topology 

similar to Figure 1 but built following previous recommendations (i.e. with different CLF 

expression). Sub-volumes in partitions C6 and C12 are cross-coupled by discretized EDM CLF in 

SEA+ software [15] and again we plot pressure levels in first and last acoustic volumes in Figure 

3. In that case, the mesh dependence has nearly been cleared. Pressure in the two last C12 sub-

volumes are now close to C6 related sub-volume as expected in the actual physics. 

 

Figure 3. Pressure levels in first and last acoustic sub-volumes in C6 and C12 partitions for 

unit power injected in resp. C6-1 and C12-1 applying EDM CLF between sub-volumes 

Virtual SEA for SEA Prediction over MF Range in Complex Structures 

Creation of a representative SEA model requires discriminating subdomains separated by expected 

energy gap, in function of the vibrational frequency reflectivity of boundaries as previously 

discussed. Partition into subsystems is then a key feature in designing a “physical” SEA model but 

is an unknown of the vibration problem. 

For complex dynamical system such car body, aircraft, spacecraft or any compact structural 

component such an electronic equipment, EDM theory cannot be directly applied as constant speed 

of sound is required among regions of smooth energy distribution. Finding potential energy gaps 

between various zones is also not always intuitive. Based on expertise developed in measuring 

SEA CLF on built-up structures [8][9][10], VSEA method [11][12][13] was introduced for 

characterizing SEA CLF and weakly coupled regions of car chassis, further extended to spacecraft 

analysis and full car body or components in operating conditions. 



For non-homogeneous systems with complex geometry, VSEA relies on FEM global real modes 

to get a snapshot of the statistical vibrational behavior in the various targeted frequency bands. 

VSEA is derived from experimental SEA analysis or ESEA [7] and identifies SEA parameters of 

the system responses by solving an inverse SEA problem like in ESEA method. Inputs to the 

inverse problem are the synthesized modal responses at a grid of predefined nodes. VSEA may be 

viewed as a kind of virtual test where the system dynamics is reduced to responses at a subset of 

discrete nodes. 

Virtual SEA Numerical Process 

Real modes are extracted using preferred FEM solver (NX-NASTRAN in next example). 

Eigenfrequencies and related modal amplitudes, at a set of restitution nodes, are stored and 

exported to SEA+ VSEA solver. VSEA is synthesizing complex velocity FRF vi/fj = vij at all 

restitution points Mi in global x, y, z directions due to rain-on-the-roof unitary x, y, z forces applied 

at each restitution node Mj. Final FE statistical information is reduced to the transfer velocity matrix 

V made of vij elements  

Global DLF for modal synthesis is taken equal to some frequency band-dependent default value 

for all modes. V matrix is compressed into 1/3rd octave band and projected in the direction ni and 

nj of maximal input/output conductances given for at all nodes by Y =Re{Diag(V)}n. The final 

matrix 2
V for SEA-parameter identification is then expressed in band-averaged format at center 

radial frequency
c
 and bandwidth B with elements given by:  

 2 21
( , ) ( )ij c ij
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v B v d
B

   (11) 

2
V is finally auto-partitioned by SEA+ peripheral algorithm which groups nodes into a set of weakly 

coupled subsystems k
 leading to SEA rectangular transfer matrix 2

V  of which elements are given by: 
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SEA parameter identification is performed by solving the SEA inverse problem relating 2
V  to 

SEA loss matrix L through the normalized SEA power balanced equations.  
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m is the subsystem mass vector and * indicates the pseudo-inverse. In practice with 

 / 4m YN  (14) 

previous equation is reshaped for direct solve of modal density vectorN . It leads to the local modal 

energy matrix power balanced equations given by: 

 /  I L ε εN L  (15) 

with elements of ε  given by: 
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ε  has dimension of modal energy and leads to accurate identification of L  thanks to SEA+ 

algorithm that performs auto-partitioning into weakly coupled regions.  

In practice, with lossless junctions, previous system is solved for identifying separately modal 

density and CLF. Model quality is assessed by comparing 2 1*4 / TV Y YL   with direct 2
V  FRF 

input. Difference 2 2V V  gives the reconstruction error matrix plot as reconstruction performance 

index in SEA+ [15].  

The MS-VSEA patch method is a variant formulation of the inverse SEA problem where the auto-

partition is applied to pre-defined group of nodes instead of nodes. This method is thus providing 

a partition per frequency band corresponding to a specific grouping of patches into subsystems. 

Main advantage is to accurately reconstruct FE transfers over the whole frequency range. Figure 1 

shows the flow chart of the VSEA process.  

 

Figure 4. VSEA data flow 

VSEA Modeling of a Car Component 

A car cockpit is analyzed with VSEA and related subsystems are shown in Figure 5. The cockpit 

is made of various imbricated plastic parts embedded in a metallic support with various section 

properties. 500 nodes map the system. Starting from a FEM model of the component, around 2500 

eigenvalues are extracted and modal amplitudes at all reference nodes are stored. SEA+ performs 

the FRF synthesis and numerical MS-VSEA model is generated from it. 



  

Figure 5. Left-Cockpit with identified nodal VSEA subsystems at 700 Hz and right-air-

conditioning block identified as a subsystem 

   

Figure 6. Left-V/F transfer velocity for a given excitation node in air-conditioning block 

subsystem and right-related local modal energy transfer as given by (16) 

Effective subsystem domains are varying with frequency. Only 4 effective subsystems are found 

at 100 Hz, 7 at 250 Hz, 11 at 500 Hz and 13 at 1000 Hz. Detection of subsystems is performed on 

the matrix made of elements calculated from (16) that provides much less node-to-node scattering 

of nodal responses that the classical FRF (V/F) as shown in Figure 6. 

In SEA+ GUI, only the finest partition is displayed for easy expansion in HF range as FEM modal 

extraction was limited to 1000 Hz due to FE size. The performance index of the mode guaranties 

the MS-VSEA band-averaged transfers to be within 2 dB from related direct FEM calculation. The 

frequency limit of MS-VSEA model is called the transition frequency, ft. 

Below ft and unlike standard SEA model, the nodal information is preserved in VSEA model, 

making possible to predict response in VSEA nodes and not only as a mean over subsystem domain. 

Correlation with measured data is easier. 

An SEA expander is then allocated to each VSEA subsystems. The expander is a “classical” SEA 

subsystem of which parameters are derived from analytical theory in order to take over the 

calculation of SEA CLF and modal densities above ft. Patches may be conveniently chosen by the 

user for easier modeling of analytical SEA expanders by ascertaining a patch as a group of FE with 

same section property for example.  

Above ft both junction CLF and subsystem modal densities are analytically expanded to HF.  



VSEA and Analytical Fluid/Structure Coupling 

VSEA or MS-VSEA subsystems are coupled to analytical SEA cavities through a specific 

statistical radiation integral calculated by spatial windowing of an elementary infinite structural 

wave [14]. The related structural VSEA wavenumber is estimated from ratio of rotational over 

translational nodal principal-direction conductances.  

For a subsystem of domain k
, 

 k

k

R

T

Y
k

Y



  (18) 

Where RY  and TY  are respectively maximal local rotational and translational conductances 

averaged over k
. 

Adding Acoustic Trims to the VSEA Bare Model 

All soft parts (internal trim panels, acoustic materials) are modeled as additional analytical 
subsystems or as attenuation spectra that filter the sound radiation. The latter are predicted by 
Transfer Matrix Method (TMM). Given an acoustic trim made of several layers (porous and/or 
elastic materials), related transmission (TL) and insertion (IL) losses are predicted by TMM under 
random incidence and infinite layer dimension. TL and IL are corrected for taking into account 
finite size of the trim. The base panels modeled as SEA subsystem are modified by trim presence 
(added mass and added damping). 

Conclusions 

SEA method provides a general theoretical framework for modeling both airborne and structure 
borne paths in complex industrial systems in the energy domain. We have brought to the fore some 
drawbacks of the method which have over years puzzled mechanical engineers in their 
understanding of SEA limitations. These limitations, mostly related to a priori sub-division of a 
system into regions satisfying SEA basic theoretical assumptions, have been overcome by 
introducing new concepts in the SEA modeling approach: 

 Automated conversion of statistical dynamical information containing in a FEM model into 

SEA subsystems compatible with their analytical counterpart, 

 Merging Energy Diffusion theory and Wave Transmission for improving coupling loss 

factor definition in region of strong coupling, 

 Coupling Transfer Matrix Method which operates on 2D infinite layers with supporting 

SEA structures, 

 Correcting calculation in infinite domain with the Spatial Windowing Technique. 

Connecting all these features in a collaborative Graphical User Interface has helped in going 
further.  Important topics, not covered in previous pages [16] are part of on-going research 
activities. They are progressively introduced in the SEA solver such as the non-resonant energy 
propagation in both structure and cavities which improves prediction of mass-controlled transfers 
of energy under acoustic and turbulent boundary layer loads. 

 Laminated shell damping and indirect mechanical coupling loss factors predictions are also an 
issue. Specific theories have been already stated and validation work is in progress. 
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