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Abstract.  
Stress/displacement field analyzing of mechanical assembly is important for 
predicting mechanical property, and optimizing structural parameters and assembly 
technology parameters of mechanical assembly. However the structural discontinuity 
and material difference of mechanical assembly determines the complexity of stress 
function, it is difficult for analytically computing stress/displacement field of 
mechanical assembly. In this paper, taking bolted joint under the action of normal 
load as the research object, a stress/displacement field layered mapping and 
calculating model of mechanical assembly is proposed, with considering the 
stress/displacement transmission characteristics of mechanical assembly, combining 
state space method and elastic mechanics theory. The model divides mechanical 
assembly as the layered structures, and determines layered constraint conditions 
according to structural discontinuity or continuity in different positions, such as the 
structure at the junction surfaces is discontinuous. Considering the difference between 
bolted joint and the common axsymmetric structure, taking the stresses z , zr and the 
displacements u , w as the state variables, the state equations based on Fourier-Bessel 
series was built to express the stress/displacement transmission relationships. 
Linearizing the stress/displacement transmission rules, the relationships between state 
variables at arbitrary and external load were determined by accumulated calculating, 
and stress/displacement characteristics at arbitrary positions of bolted joint structure 
were obtained. Finally, the pressure distribution of the bolted joint interface, and 
stress/ displacement distribution of the whole bolted joint structure was calculated, the 
comparison among the analytically calculation, FEA and the test data proves the 
effectiveness of the model. 
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1. Introduction 

Mechanical systems are usually composed of multiple parts, which were assembled 
according to the specific requirements. The contact surfaces among these parts are 
known as the "joint surfaces" or "interfaces", such as bolted joint surfaces, guide 
contact surfaces and the mating surface between hole and shaft. The joint surfaces, 
together with the influence area of stress/deformation in the connected mechanical 
components, are known as "joint" [1]. 
 
Joint surfaces / joints have remarkable influence on the statics, dynamics and 
thermodynamic characteristics of mechanical systems, and obtaining the stress / 
displacement distribution in joints is the basis for accurately analyzing the 
characteristics of mechanical systems. Joint surfaces / joints stiffness, which is closely 
related to the stress / displacement distribution in the joints, is a key factor affecting 
the accuracy of the mechanical systems [2, 3]. Bolted joints and hole-shaft mating 
surfaces often occur fretting fatigue under the external alternating loads, which leads 
to premature parts failure, and the stress / displacement distribution in joints is the 
main factor affecting fretting fatigue [4]. The dynamics characteristics are the key 



 

features of mechanical assemblies, the stiffness distributions in joints are the 
important factors influencing dynamics characteristics, and obtaining the stress / 
displacement fields is the premise of calculating stiffness of joints and revealing the 
dynamics of assemblies [5-7]. Moreover, determining the contact area distribution and 
elastic-plastic contact state in joints have also great significance for analyzing heat 
transfer mechanism of assemblies [8, 9]. However, it is difficult to measure directly 
the stress/displacement distribution in joints, theoretical analysis and calculation are 
the primary means of obtaining stress / displacement fields information. 
 
Compared to a single part, the structural discontinuity and material difference of 
mechanical assemblies makes it difficult to calculate the stress / displacement field 
based on the traditional elasticity theory. The traditional elasticity theory based on the 
continuity, uniformity and other basic assumptions, and one component is composed 
of the same material, the stress, deformation and displacement characteristics in one 
component are completely continuous. The mechanical assemblies have the 
discontinuous structure characteristics, the stress /displacement distribution of joint 
surfaces is unknown. Because lacking mature stress/ displacement distribution 
function under the unknown boundary conditions[10-12], it is difficult to accurately 
calculate the stress/displacement field of the mechanical assembly in the traditional 
elastic mechanics system.  
 
Finite element method (FEM) is the current main method of calculating the stress / 
displacement field in mechanical assembly [4, 6, 13-16]. The stress / displacement 
field calculation of joint surfaces / joints belongs to contact nonlinear problem, which 
requires large computation memory but embodies a low computational efficiency. 
Additionally, the FEM computation results depend on the high quality of grids, 
especially need dense grids in the contact area, which also limits the efficiency of 
solving such problems. 
 
Combining with elastic mechanics, the state space methods have been used to 
calculate exactly the stress / displacement fields of laminated plates, functionally 
graded plates, and multi-layer civil structures, etc., these studies provide references 
for the stress/displacement field calculation of bolt joint. Such as, Xiang and Wang[17] 
obtained the exact buckling and vibration solutions of unidirectional ladder 
rectangular plates by combining the Levy method and the state space theory. Chen 
and Ding[18] derived two independent state equation with variable coefficients, and 
analyzed the freedom vibration of transversely isotropic piezoelectric material 
rectangular plate on the basis of three-dimensional theory equations of transversely 
isotropic piezoelasticity. Ying et al. [19] put forward the exact solutions of bending 
and free vibration for functionally graded beams placing on a Winkler–Pasternak 
elastic foundation, based on the two-dimensional elasticity theory and state space 
method. Adopting state space method, Hongyu and Jiarang [20, 21] obtained the 
analytical solutions of bending problem for clamped or simply supported thick 
laminated circular plate, as well as thick laminated circular plate on elastic foundation 
with free edges. 
 
Taking the external load of joint surfaces/joints as the input information and 
stress/displacement distribution as the output information, and expressing the 
transmission characteristics of the stress/displacement as state transition matrix, the 
stress/displacement field can be calculated based on state space theory. The 



 

stress/displacement field calculation of mechanical assemblies have the similar theory 
basis to the previous research objects[17-21], with discarding any assumptions about 
displacement pattern and stress distribution, and constructing the stress/displacement 
transfer matrix of mechanical assembly by adopting the state space differential 
equation. 
 
The bolted joint under the action of normal load was selected as research object in this 
paper, the structure, material and loading mode of bolted joint are different from the 
laminated plates, etc., a new calculation model for bolted joint was built. And the 
traditional axial symmetry stress/displacement state equations do not completely 
match with the structural characteristics of bolted joint, the state equations for bolted 
joint was built.  

2. State Space Method in Elastic Mechanics Problem 

State space method is a method to analyze and synthesize control systems based on 
the state variable description in modern control theory. State space method describes 
the state of the system with the state variables, and establishes the relationship 
between the state variables within the system and the external input/output variable. 
State equation is the mathematical description which reflects the causal relationship 
between state variables and input variables in state space method. Because state space 
method uses matrix representation, the increase in the number of state variables, input 
variables or output variables, does not increase the complexity of the system 
description, which makes it especially suitable for dealing with multiple input, 
multiple output and multivariable system problems. 

 
Using the state space method to solve the elastic mechanics problem, first of all, 
should select the key unknown variables as state variables, and then set up the 
mechanics model according to the actual problem. The number and the type of the 
state variables depend on the specific problem. For example, the stresses z , xz , yz

and the displacements u , v , w  can be selected as state variables，and constitute the 

state vector 
T

z xz yzS u v w      . The ordinary differential state equation of 

elastic mechanics problem can be obtained by physical equation, equilibrium equation, 
and a series of changes, such as series expansion, Laplace transform, Hankel 
transform, etc. Generally the form of ordinary differential state equation as follows:  
 

     d
S z DS z z

dz
                            (1) 

 
where  S z  is the state vector, D  is a square matrix related to material parameters, 

 z  is an array related to boundary conditions. The state equation is obtained by 

solving Eq. (1) as follows: 
 

       0S z T z S z                               (2) 

 
where square matrix  T z  is the state transition matrix. Thus, the state  S z  that 



 

transfers any distance along the z direction is obtained from Eq. (2), with the known 
initial state  0S . 

 
The state space method is an effective way to deal with the discontinuous structure 
problem of mechanical joints, which divides the matching components into different 
"chains" and sets the boundary conditions so as to adapt to the material discontinuous 
characteristic in structure and material. And it calculate the stress/ displacement 
exactly by dividing a single component (corresponds to a "chain") into different 
virtual "layers". Moreover, the assembly that is divided into virtual layers, is an 
end-to-end chain system, whose state variables can be obtained from the simple 
accumulation of the state transition matrix. Since the number of the state variables 
don't vary with the number of "chains" or "layers", to a great extent, complex 
problems can be simplified. 

3. Calculation Model for Bolted Joint 

3.1 Model Assumption 

To research the stress/displacement field in bolted joints, the analytical model is 
assumed to be the axisymmetric mechanics problem as shown in Fig. 1. The two 
bolted plates are expressed as hollow cylinder andⅠ Ⅱwith inner diameter 2a  and 
outer diameter 2b , whose thicknesses are 1h and 2h  respectively. Preload is an 

axisymmetric distributed pressure  p r  on the upper surface of hollow 

cylinder over an annular region Ⅰ a r c  . Hollow cylinder corresponds to the Ⅱ
bolted member with a fixed lower surface. All of the cylindrical surfaces of hollow 
cylinder andⅠ  Ⅱ are free boundaries. Take the center of upper surface of hollow 
cylinder as the coordinate originⅠ O . Take the central axis of the hollow cylinders as 
the symmetry axis z , whose direction is vertical downward, and axis r  is in the 
horizontal direction, the global cylindrical coordinate system  , ,r z  is established 

as shown in Fig. 1(a). in the same way, the local cylindrical coordinate systems 
 1, ,r z  and  2, ,r z  are established on hollow cylinder and , respectively.Ⅰ Ⅱ  

 
To make the model as simple as possible, following basic assumptions are used: 
 
(1) The material of each hollow cylinder is assumed to be ideal elastic, continuous, 
homogeneous, and isotropic. 
 
(2) Body forces are ignored. 
 
(3) The roughness, flatness and other practical machining errors of the contact surface 
are ignored, the joint surface is absolutely smooth and flat. 
 
(4) The points in the contact surface of the two pieces of hollow cylinders always 
maintain contact during the loading process.  
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Fig. 1 Analytical model of bolted joint 

3.2 Boundary Conditions 

To simplify the calculation, the distributed pressure  p r  in Fig. 1 is assumed to be a 

uniformly distributed load whose resultant force is F : 
  

 
 

 

2 2( )

0

F
p a r c

c ap r

c r b


     
  

                   (3) 

 
In this paper, the superscripts (1) and (2) denote the mechanical characteristics of 
hollow cylinderⅠ and Ⅱ respectively, and u  and w  denote horizontal and vertical 
displacement respectively. The boundary conditions are given by Eq. (4) ~ (7).  
 
(1) The upper surface of hollow cylinderⅠ: 

 

1 0z  ：  (1) (1), 0z zrp r    ，                      (4) 

 
 (2) The lower surface of hollow cylinderⅡ: 
 

2 2z h ： (2) (2) 0u w                             (5) 

 
 (3) The contact surface of hollow cylinder and :Ⅰ Ⅱ  

 

1 1 2, 0z h z  ： (1) (2) (1) (2) (1) (2), , = =0z z zr zrw w                 (6) 

  
(4) All of the cylindrical surfaces: 

 

,r a b ： (1) (2) (1) (2)=0, 0zr zr r r                         (7) 

                 



 

3.3 State Equations 

The stress/displacement field calculation in bolted joint under the normal load belongs 
to axisymmetric problem, whose physical equations are expressed as follows: 
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                    (8) 

 
where   is Lame Constant, G  is the shear modulus. 
 
The equilibrium equations of axisymmetric problem are expressed as follows: 
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Eliminating r  and   from Eq. (8), we obtain 
 

2 3 1r z

u u
C C C

r r
 

  


                       (10) 

3 2 1 z

u u
C C C

r r 
  


                       (11) 

 
Selecting u , w , zr and z  as the state variables, the following is obtained from Eq. (8) 
and (9). 
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   (12) 

 
This paper expands the solution of Eq. (9) into following Fourier-Bessel series 
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                  (13) 

 
The form of Fourier - Bessel series Hongyu and Jiarang [20,21] proposed, can meet 
the boundary conditions of circular plate, but cannot meet the boundary conditions of 
bolted joint structure (hollow cylinder). To solve this problem, the form of the 
function ( )mV r   is structured as follows: 

 

   
   ( ) m

m m m
m

J b
V r J r Y r

Y b


  



  


   

 
where  mJ r   and  mY r   are the first type and the second type  -order Bessel 

functions separately.  U z  is an unknown function for z . mU , mW , mR  and mZ

 0,1,2,3,m    are respectively the coefficients of Fourier-Bessel series of u , w , zr  

and z . /m m a  ,  1,2,3,m m    is the m -th positive root satisfying the 

following equation 
 

   1 1 1 1 1 2 30, (0 )m m m m

b b
J Y J Y

a a
                

   
        (14) 

 

1( )mV r  satisfies 1 1( ) ( ) 0m mV a V b   , therefore Eq. (13) satisfies the boundary 
conditions =0zr  in Eq. (7). In addition, to satisfy boundary conditions of cylindrical 
surfaces, there should be 0r   at r a  or b . Substituting the first and the forth 
equation of Eq. (13) into Eq. (10) and setting 0r  , the following two equations can 

be obtained, and the unknown function  U z  can be determined from Eq. (15) and 

(16). 
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(16) 

Performing the following series expansion 
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                (17) 

 
The coefficients are obtained according to related knowledge of Fourier - Bessel 
series as follows 
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Where 
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Substituting Eq. (13) and (17) into Eq. (12), the following equation can be obtained  
 

     d
S z DS z z

dz
                           (18) 

 

Where 

 

          T

m m m mS z U z W z R z Z z                 (19) 
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            (21) 

 
Eq. (17) is a nonhomogeneous ordinary differential equation, and solving it yields the 
state equation as follows 
 

       0S z T z S z                         (22) 

 

Where 

 

     DzT z e                              (23) 

       
0

z D z tz e t dt                            (24) 

 
In Eq. (22),  S z  is the state vector at z , namely the coefficient terms of 

Fourier-Bessel series,  0S  is the initial state vector on the upper surface. For a 

certain m , the matrix D  is a constant matrix, so  T z can be obtained. The 

parameters of  z  are known except  U z . Therefore, For a certain m , the state 

vector  S z , namely the coefficients of Fourier-Bessel series mU , mW , mR  and mZ  

at z , can be obtained with the initial state vector  0S  in Eq. (22), only if the 

function  U z  is determined. 

 
Particularly, there are the following relation for 0m  . 
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3.4 Coefficients of Fourier-Bessel Series for 1m   

Determining the function  U z  is the key to Stress/displacement  field  calculation. 

As shown in Fig. 2, the j -th hollow cylinder is divided into jN  virtual sublayers 

averagely, and the thickness of each sublayer is /j j jd h N . Let ,j ix  and , 1j ix   be 

the end-values of the upper surface and the lower surface of the i -th sublayer in the 
j -th hollow cylinder, respectively. As shown in Fig. 3, provided that the sublayer is 



 

thin enough, it is reasonable to consider that the unknown function  U z  in the 

sublayer is linear distributed along z direction [20]. So in the i -th sublayer of the j

-th hollow cylinder, function  U z  can be denoted by  , ,j i j iU z  as follows, in the 

local coordinate system whose origin of axis ,j iz  is on the upper surface of the 

sublayer. 
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Fig. 2 Sublayers and corresponding  U z  

,j iO  , ,j i j iU z
,j ix

, +1j ix

,j iz  

Fig. 3 Linear distribution assumption 
 

Linear distribution assumption (26) causes calculation error, but if the number of the 
sublayers jN increases gradually, the error will decrease. So the error is controllable 

and jN can be determined based on the accuracy requirement. For any sublayer, the 

ordinary differential state equation is obtained according to Eq. (18), (21) and (26) 
 

     , , , , , ,j i j i j j i j i j i j i

d
S z D S z z

dz
                       (27) 

 

Where 

 

  , , 1
, , 0 0 0

T

j i j i
j i j i m

j

x x
z A

d
 

   
  
                      (28) 

 
According to Eq. (22) ~ (24), the solution of Eq. (27) is obtained 



 

  

       , , , , , ,0j i j i j j i j i j i j iS z T z S z                        (29) 

 

Setting ,j i jz d  in Eq. (29), the solutions of adjacent sublayers within the same part 

as follows. 

 

       
       

, , ,

, 1 , 1 , 1

0

0

j i j j j j i j i j

j i j j j j i j i j

S d T d S d

S d T d S d  

   


  
                  (30) 

 
The continuity condition between the sublayers is 
 

   , , 1 0j i j j iS d S                               (31) 

 
Perform Eq. (30) and (31) successively for all the sublayers, and finally the 
relationship between the state vectors of the lower surface of the j -th hollow 

cylinder  , jj N jS d  and the upper surface  ,1 0jS  can be expressed as the following 

formula: 
 

         , ,1 ,0 , 1, 2
j

j j

N

j N j j j j j N jS d T d S d j                  (32) 

 

Where 
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1 2
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, 1 ,

j
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j j

N

j N j j j j j j j j N j

j j j N j j N j

d T d d T d d

T d d d








          

  


         (33) 

 
In the local coordinate system of each sublayer, the state vector is  
 

         ( , ) ( , ) ( , ) ( , )
, , , , , ,

T
j i j i j i j i

j i j i m j i m j i m j i m j iS z U z W z R z Z z           (34) 

 
where  denots sublayer’s upper surface,  denots sublayer’s lower 

surface. 
 

According to the boundary condition (4), the following is given: 

 

 (1,1) 0 0mR                              (35) 

 

, 0j iz  ,j i jz d



 

In addition, the distributed pressure  is known, so  can be expressed as 

the form of Fourier-Bessel series according to Eq. (30) 

 

       (1,1) (1,1)
0 0

1

0 0m m
m

p r Z Z V a r




                           (36) 

 
According to the boundary condition (5), the following is given: 
 

   2 2(2, ) (2, )
2 2 0N N

m mU d W d                   (37) 

 
According to the boundary condition (6), the following is given: 
 

   1(1, ) (2,1)
1 0N

m mW d W ，    1(1, ) (2,1)
1 0N

m mZ d Z ，    1(1, ) (2,1)
1 0 0N

m mR d R   (38) 

 

Regarding the variables of  and  in Eq. (33) as unknown, 

there are 16 unknown variables in total, eight of which can be eliminated by Eq. (35) 
~ (38). Therefore, the expression of other unknown variables can be solved from Eq. 
(32). Obviously, the expression of  is also obtained. It is important to note that 

the expression of  also contains the undetermined constants  

( ； ). After determining the expression of , by repeating 

the derivation process of Eq. (32) , the stress/displacement of the -th sublayer in the 
-th hollow cylinder can be calculated, matrix  , ,j i j iz  and vector  , ,j i j iz  are 

not difficultly to obtain. 
 

       , , , , ,1 , ,0j i j i j i j i j j i j iS z z S z                         (39) 

 
If global coordinate  locates in the -th sublayer of the -th hollow cylinder, 

,j iz  is given by 

 
 

 
1

,

1 2

1 , ( 1)

1 , ( 2)
j i

z i d j
z

z h i d j

    
   

                        (40) 

3.5 Coefficients of Fourier-Bessel Series for 0m   

The following formulas is obtained from Eq. (25) and (26): 
 
 

     
       

( , ) ( , ) (1,1)
0 , 0 0

( , ) ( , ) ( , )
0 , 0 4 0 , 1 , , 1 ,

0 0

0 0

j i j i
j i

j i j i j i
j i j i j i j i j i

Z z Z Z

W z W C Z z C x x z
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

   
       (41) 
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z i j



 

 
Particularly, setting , the following formulas can be obtained: 

 
       ( , ) ( , ) (1,1)

0 0 4 0 1 , , 10 0j i j i
j j j i j i jW W d C Z d C x x d             (42) 

 
According to the boundary conditions, the following is given: 
 

 
   
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0 2
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Therefore, all of the  can be solved from Eq. (42), and then the expression 

of  at any position can be obtained from Eq. (41). 

3.6 Solving the Undetermined Constants 

There are  undetermined constants  in the -th hollow cylinder, add up 

to 1 2 2N N   undetermined constants in hollow cylinder Ⅰand Ⅱ, to solve the 

undetermined constants,  equations were needed. Set ，

,where ， 2n  are positive integer. By solving Eq. (26), (39), (40) and (41) ，

 ,j iU z ,  and  at the position of Eq. (43) can be determined, and 

substituting them into Eq. (15) and (16),  linear equations are obtained, 
and all the undetermined constants can be solved. The state variables at any position 
in the two hollow cylinders can be determined according to Eq. (39) and (41), and 
the corresponding stress/displacement can be obtained by substituting the 
coefficients into Eq. (13). 
 

1 1 1 1

2 2 2 2 2 2

2 , ( 0,1,2,3, , )

2 , ( 0,1,2,3, , , 1)

k d k n
z

k d k n but k n


    




            (43) 

4. Calculation Example  

4.1 Comparison of Three Methods 

To verify the effectiveness of the above method, a specific example is designed, as 
shown in Fig. 4, the contact stress of the joint surface is extracted, and comparing 
with the experimental measurement and the finite element analysis result is carried 
out.  
 
Both the material of the two hollow cylinders are Q235, Young's modulus 

5
1 2 2 10 MPaE E   , Poisson's ratio . the parameters in Fig. 1 are 

, , , , . The normal load on the surface 

,j i jz d
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0 0j iW
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0 ,

j i
j iW z

1jN  ,j ix j

1 2 2N N  1 12N n

2 22N n 1n

 ( , )j i
mU z  ( , )j i

mZ z

1 2 2N N 

1 2 0.3  

6.3a mm 45b mm 12c mm 1 10h mm 2 20h mm



 

is , which can be expanded into the form of Fourier-Bessel series 
according to Eq. (36). The coefficients is given by 
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2 2
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A satisfactory results was obtained by setting and selecting first 10 items 
of the Fourier-Bessel series. 
 
In the experimental, two hollow cylinders of Q235 with 12.6  through-hole were 
placed on worktable and connected by M12 bolt and 24  gasket. The normal load 
reached 4500N , which was measured by a pressure sensor. The contact stress was 
measured by means of the pressure-sensitive film, as shown in Fig. 4. 
 

 

Fig. 4 Experimental setup for joint contact stress test 
 
The white pressure-sensitive film turns red under pressure, and the red concentration 
increases with the increase of intensity of pressure. So the contact stress can be 
measured by evaluating the color concentration of the film. Fig. 5(a) shows the 
scanning image of the pressure-sensitive film after experiment. Fig. 5(b) shows the 
contact stress distribution with a three-dimensional figure. The figure clearly shows 
that the contact stress presents "steep peak" shape distribution, the maximum contact 
stress appears near the center of the load, and the stress decreases rapidly from the 
center to the edge until reduces to zero. 
 

1l
2l

3l
4l

o

          

z


    

 (a) Scanning image of the film                (b) 3-D distribution figure         

Fig. 5 Contact stress distribution in bolted joint 

4500F N

1 2= =80N N



 

 

As shown in Fig. 5, because of the machining error of specimens, the position 
deviation of bolt installation and the measurement error of pressure-sensitive film, 
measurement result is not absolutely axisymmetric. In order to eliminate the impact 
of these factors on the measurement result, four straight paths along radial direction, 

1l ~ 4l , are set up on the film, as shown in Fig. 5(a). The pressure value of several 
points of the paths are extracted, and the average value of the same radial position 
are obtained. Thus, the contact stress distribution along radial direction are obtained. 
It should be noted that because the measurement error is large near the edge of the 
hole, the experimental data at the position isn't extracted.  
 
Fig. 6 shows the contact stress distribution curves of state space method (SSM), 
experimental measurement and finite element method (FEM). The negative value 
denotes compressive stress. It can be seen that three distribution curves have a good 
consistency, so the state space method of this paper is accurate and reliable. 
 

 

Fig. 6 Data comparison of contact stress  

4.2 Stress / Displacement Field in Bolted Joint 

The stress and displacement information of bolted joint are extracted on the basis of 
the state space method calculate model proposed in this paper. Some stress and 
displacement distribution curves along radial direction are shown in Fig. 7. It can be 
seen that normal stress z  and vertical displacement w  both own considerable 
variation gradient at r c , but tangential stress zr  and horizontal displacement u  
appear to be bigger values at r c  than other positions. Moreover, with the increase 
of coordinate r , all the stresses and displacements tend to zero as shown in Fig. 7. 
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 (a) Normal stress z                         (b) Tangential stress zr  

 

      

(c) Vertical displacement w                    (d) Horizontal displacement u  

Fig. 7 Stress and displacement distribution curves along radial direction 
 

For mechanical discontinuous structure problem, normal stress z  and vertical 
displacement w  are likely to be the mechanics characteristics people pay more 
attention to. Some stress and displacement distribution curves along z  direction are 
shown in Fig. 8. It can be seen that z and w  decrease nonlinearly with the 
increase of z . In order to display the distribution of bolted joint under the normal 
load more visually, the contour map of z  and w  are drawn, as shown in Fig. 9. 
The z  and w  in the bolted joint subjected to a normal load, can transmit 
swimmingly from the upper plate to the lower plate, and shows a good continuity. 
The influence region of the external load is mainly on the surface region a r c  , as 
well as its lower region. With the increase of z , the influence region spreads 
gradually, nevertheless, the stress and displacement decrease rapidly.  
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(a) Normal stress z                         (b) Vertical displacement w  

 Fig. 8 z and w  distribution curves along z  direction 
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(a) Normal stress z  (MPa)                 (b) Vertical displacement w  ( m ) 

Fig. 9 Contour map of z  and w  

5. Conclusions 

A stress/displacement field calculation model combining elastic mechanics with state space theory 
is established to solve the mechanical calculation problem associated with the discontinuity of 
structure and material in bolted joints. The stress / displacement distribution regularities of the 
joint surface and the components are obtained accurately, and the transfer characteristic of 
mechanics characteristics in bolted joint structure is analyzed. 
 
The calculation model based on state space theory is a new way to calculate the stress / 
displacement field in bolted joints rapidly. It can rapidly and accurately obtain the relationship 
between the mechanics characteristics distributions in bolted joint and the factors such as structure, 
material, load, and so on, and has a wide application prospect in the design and optimization 
process of bolted joints. 
 
This model still has some shortcomings. For example, because of ignoring the flatness, waviness 
and roughness of the contact surfaces, there will be a deviation between the calculation results and 
the actual situation to some extent. The object of the model is only limited to simple geometric 
shapes and force conditions. The analytical model of the mechanics characteristics of the complex 
geometry parts subjected to non-axisymmetric loads or horizontal load (unidirectional load, 
rotational load) needs further study. 
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