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Abstract 
Considering sudden change in vehicle’s acceleration, an improved car-following model with 
a feedback control signal jerk was studied and presented in this paper. Stability analysis of 
the modified model was achieved according to the control theory method. Through 
theoretical analysis, the modified model may provide insights for developing management 
strategy to improve traffic jams. 
Keyword: car-following models, feedback control, traffic jerk 

1. Introduction 

Traffic jams have been studied by many traffic simulation models namely, the car following 
models, the hydrodynamic models, the cellular automation models and the gas kinetic models 
[1-15]. In 1999, Konishi et al. [16] put forward a chaotic car-following model by setting the 
time delay feedback control, and researched single-lane traffic operation without reverse 
phenomenon under an open boundary condition. In 2006, Zhao et al. [17] put forward a 
control method for the suppression of the traffic jam. They gave a control signal which 
included the effect of velocity difference between the preceding and the considered vehicle. 
In 2007, Han and Ge [18] presented a coupled map car-following model for traffic flows with 
the consideration of the application of intelligent transportation systems. The control signal 
uniform to the velocity difference between the i-th vehicle in front and the (i+1)-th vehicle, 
and the developed model can improve the stability of traffic flow. Other research was 
connected with the control signal has been carried out recently [19, 20, 21, 22]. 
 
In 1961, Newell [2] put forward a car-following model with a differential equation and give 
graphic description of the optimal velocity (OV) function. In 1995, Bando et al. [3] proposed 
optimal velocity model (OVM) for car-following model. In the OVM, the acceleration of the 
n-th vehicle at time is identified by the difference between the actual velocity and an optimal 
velocity, which depends on the headway to the car in the front. In 2001 Jiang et al. [23] 
presented full velocity different model for car-following theory (FVDM) by considering both 
negative and positive velocity difference, which can give a better description of starting 
process than OVM. In 2012, Yu et al. [24] proposed a full velocity difference and 
acceleration model (FVDAM).The following cars in FVDAM react more quickly than those 
in FVDM and the stability of FVDAM is more stable than that of FVDM. However, no 
studies have ever tried to consider control method with jerk for the FVDM. Based on 



previous work, this paper investigates a new control scheme considering jerk. As we known, 
the vehicle’s velocity changes are its acceleration, which means how quickly the vehicle 
increases and loses speed. Furthermore, abrupt change in vehicle’s acceleration is called 
‘jerk’, and it will affect the stability of traffic flow, so FVDM with the traffic jerk is studied 
in this paper. 

 
In section 2, the FVDM is recovered and stability analysis is carried out. In section 3, the 
car-following model including a feedback control signal is put forward and the feedback 
control method is used to analyze the stability conditions. Conclusions are given in section 4. 

2. Car-following model and its stability analysis 

2.1. Full velocity different model 

The dynamic equations of FVDM [23] are given by: 
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where τ1=a  is the sensitivity of a driver, )()()( 1 txtxty nnn −= +  and 
)()()( 1 tvtvtv nnn −=∆ +  are the headway and the velocity difference between the n-th 

considering vehicle and the preceding one, and ）)(( tyV n
OP  is the optimal velocity function, 

which is written as follows: 
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where ch  is the safety headway distance. 

2.2. Stability analysis 
We assume that the leading vehicle runs constantly at speed 0v , so the steady state of the 
following vehicles are 

              ),(), ** yvyv =（ .                            (3) 

Then, consider an error system around steady state (1), that is, 
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The Laplace transformation for Eq. (4) leads to 
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where ))()(Vn tvLs nδ（= , ))(()(Yn tyLs nδ= , )L(⋅  denotes the Laplace transformation, s  

is a complex variable. Form Eq. (5), we have 
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Let Λ+++= asassp )()( 2 λ  and the transfer function can be obtained as 
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Based on stability theory, the traffic jam will never occur in the traffic flow system as long as 

the characteristic function Λ+++= asassp )()( 2 λ  is stable and 1)( ≤sG . 

In order to make )(sp  stable, that 0>a  and 0>Λa  should be confirm. According to the 

Hurwitz stability criterion, the OV function is monotonic increase (i.e. 0>Λ ) and 0>a , 

we obtain that )(sp  is stable. 

Then, we consider 1)( ≤sG  which can be expressed as 
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The sufficient condition can be obtained as 
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which can be rewritten as 
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If the condition 
2

- a
Λ≥λ  is satisfied, the traffic system will be stable. 

3. Control scheme 
The aim of this paper is to purpose a control scheme for suppression of congested traffic in 
the car-following model. A feedback control signal )(tun  is designated as follows: 

)
)1()(

()(
dt
tdv

dt
tdv

ktu nn
n

−
−=                         (11) 

where k  is the feedback gain, which can be adjusted. The control signal term is added to Eq. 
(1) as 
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The control signal )(tun  is traffic jerk.  
 
Similarly, we assumed that the leading vehicle runs with constant speed 0v , the steady state 
of the following vehicles are the same of Eq.(3). Then, consider an error system around 
steady state (12), that is 
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The Laplace transformation for Eq. (13) leads to 
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( ))()( tyLsY nn δ= , ( ).L  denotes the Laplace transformation, s  is a complex variable. Form 

Eq. (14), we have 
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Let se s =− −1 , substituting it into Eq. (15), which leads to 
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Let 32* )()( ksssaasp −+++Λ= λ  and the transfer function can be obtained as 
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Thus, traffic jams will never occur in the traffic flow system if )(sp  is stable 

and 1)(* ≤
∞

SG . Similarly to the second part of the analysis, the sufficient condition is given 

as 
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Then, we can obtain the sufficient condition through the above analysis, that is 
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The sufficient condition for Eq. (19) is 
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4. Summary 
In this paper, a new feedback control signal ‘jerk’ is added to FVDM. The stability condition 
of developed model is analyzed by using feedback control theory. Through theoretical 
analysis, the range of reaction parameter λ  for the model with and without feedback control 
signal obtained.  
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