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Abstract 

A straightforward implementation of multi-block lattice Boltzmann method (MB-LBM) on a 
graphical processing unit (GPU) is presented to accelerate simulations of complex fluid flows. The 
characteristics of MB-LBM algorithm are analyzed in detail. The algorithm is tested in terms of 
accuracy and computational time with the benchmark cases of lid driven cavity flow and the flow 
past a circular cylinder, and satisfactory results are obtained. The results show the performance on 
GPU is consistently better than that on CPU, and the greater the amount of data, the larger the 
acceleration ratio. Moreover, the arrangement of computational domain has significant effects on 
the performance of GPU. These results demonstrate the great potential of GPU on MB-LBM, 
especially for the calculation with large amounts of data. 

Keywords: Multi-block, Lattice Boltzmann method, Graphical processing unit, Ratio of 
acceleration. 

Introduction 

During recent decades, the lattice Boltzmann method (LBM) has developed into an alternative 
method for simulating complex fluid flow [1]. LBM is based on the statistical physics and 
originally came from the Boltzmann equation. A direct connection between the lattice Boltzmann 
equation and Navier-Stokes equations has been established under the nearly incompressible 
condition [2]. The fact that LBM evolves rather locally makes it more suitable for parallel 
computing compared to the conventional computation method. 
 
Graphical processing unit (GPU) is designed to process large graphics data sets for rendering tasks, 
so it has exceeded the computation speed of PC-based central processing unit (CPU) by more than 
one order of magnitude while being available for a comparable price. Another advantage for GPU 
application is that Compute Unified Device Architecture (CUDA) provided by NVIDIA, a standard 
C language extension for parallel application development on a GPU, reduces the development 
threshold of GPU programming greatly. Due to the inherent parallelism of LBM, a significant 
speedup of GPU-based computation on LBM has been reported in different areas. Fan et al. [3] 
implemented the LBM simulations on a cluster of GPUs with message passing interface (MPI). 
Tolke and Krafczyk [4] implemented a three-dimensional LBM and achieved near teraflop 
computing on a single workstation. Zhou et al. [5] provided an efficient GPU implementation of 
flows with curved boundaries, leading to nearly an 18-fold speed increase. Tubbs et al. [6] 
implemented LBM for solving the shallow water equations and the advection dispersion equation 
on GPU-based architectures, and the results indicate the promise of the GPU-accelerated LBM for 
modeling mass transport phenomena in shallow water flows. GPU has tremendous potential to 
accelerate LBM computation owing to the parallel nature of LBM.  



 
The traditional LBM is often employed on uniform grids, which makes the evolution explicit and 
the algorithm simple, but at the same time could increase the computational effort dramatically on 
the road to high resolution. To solve this problem, a multi-block lattice Boltzmann method 
(MB-LBM) is designed and applied over the flow area where relatively high resolution is needed. 
As a useful tool of grid refinements in LBM, the multi-block technique has been investigated in 
recent years. In 1998, Filippova et al. [7] introduced a local second order refinement scheme and 
provided the theoretical foundation for multi-block techniques. In 2000, Lin and Lai [8] designed a 
composite block-structured scheme by placing the fine grid blocks on needed area for the mesh 
refinement. In 2002, Yu et al. [9] proposed a multi-block scheme, where the fine block is partially 
overlapped at the interfacial lattices, increasing the model efficiency greatly. The model has been 
successfully applied to various areas. Yu and Girimaji [10] extended this model to 3D turbulence 
simulations. Y. Peng et al. [11] applied it in the immersed boundary lattice Boltzmann method with 
multi-relaxation-time collision scheme. Liu et al. [12] validated the multi-block lattice Boltzmann 
model coupled with the large eddy simulation model in transient shallow water flows simulation. 
Farhat et al. [13][14] extended the single phase MB-LBM to the multiphase Gunstensen model, in 
which the grid was free to migrate with the suspended phase, and validated a 3D migrating 
multi-block model. Following from this, the present study aims to develop an efficient and 
straightforward algorithm for the GPU implementation of MB-LBM, and test it in terms of accuracy 
and computational time. 

Multi-block lattice Boltzmann method 

In the present study, the BGK lattice Boltzmann method is used with a two-dimensional 
nine-velocity (D2Q9) discrete velocity model [2], as shown in Fig. 1. The lattice Boltzmann method 
formulates as the following evolution equation: 
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Figure 1. Lattice pattern: D2Q9 

 

where fα  is the particle distribution functions representing the probability of particles at position 

x  and discrete velocity αe  at time t ; tδ  is the time step; τ  is the single-relaxation-time, 



depending on the kinematic viscosity ν , 3 0.5τ ν= + ; eα  is the α th discrete velocity, the 

discrete velocity model is 
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eqfα , the approximate of the Maxwell-Boltzmann equilibrium distribution function at low numbers, 

is expressed as follow: 
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where wα  is the weighting coefficient, valued by 0 4 / 9w = , 1 2 3 4 1/ 9w w w w= = = =  and 

5 6 7 8 1/ 36w w w w= = = = ; the sound speed is 1/ 3sc = ; ρ  and u  are the macroscopic density 

and velocity, which can be calculated from the distribution function respectively by: 
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This paper uses the multi-block method proposed by Yu et al. [9], which satisfies the continuity of 
mass, momentum and stresses across the interface. To illustrate the basic idea, a two-block system 
consisting of a coarse block and a fine block is shown in Fig. 2. 
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Figure 2. Interfaces structure between two blocks 

 
The ratio of the lattice space between coarse blocks and fine blocks m is defined as: 

 /c f c fm x x m mδ δ= =  (5) 



where the subscript c refers to the coarse block while f refers to the fine block, cxδ  and fxδ  are 

the lattice space, 1cm =  and /f c fm x xδ δ=  are the lattice space parameters. To maintain a 

consistent viscosity across blocks, the relaxation time fτ  on the fine block and cτ  on the coarse 

block have to satisfy the following equation: 

 =0.5 ( 0.5)f f cmτ τ+ −  (6) 

 
The transfer of the post-collision distribution functions between different blocks happens after the 
collision step. Since each interface grid consists of overlapping two sets of coarse and fine nodes, 

the information of coarse boundary nodes can be obtained after fm  steps of evolution on the fine 

grid, where the post-collision distribution cfα  for the coarse block is written as: 
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Similarly, when transferring the data from the coarse block to the fine block, one follows: 
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As shown in Fig. 2, the line MN is the fine block boundary, while the line AB is the coarse block 
boundary. The information on the nodes noted by solid symbol can be obtained through spatial 
interpolation based on the information at the open nodes on the line MN.  
 
To eliminate the possibility of spatial asymmetry caused by interpolations, a symmetric cubic spline 
fitting is used to calculate the unknown nodes on the fine blocks [9], which is done by 
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where according to the continuity of the nodal condition of f  and f ′  (the first order derivation 

of f ), and suitable end condition, the coefficients ( , , , )i i i ia b c d  in Eq. (9) are computed as 

follows: 
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where iM  is the second order derivatives of if , following the equation 

 1 1 1 10.5 2 0.5 3(2 )i i i i i iM M M f f f− + − ++ + = − −  (11) 

The natural spline end condition is stipulated with 0 0nM M= = .  

 
A three-point Lagrangian scheme is used in the temporal interpolation of the post-collision 
distribution function on the interface grid at the specific time: 
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So the function for the nth evolution of the fine block is expressed as 
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The flow chart of the computational sequence for the MB-LBM in the two-block system is shown in 
Fig. 3.  
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Calculate macroscopic variables and 
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Figure 3. The flow chart of the computational sequence for MB-LBM 

 
In this paper the momentum-exchange method [15] is used to calculate the force exerted onto the 
obstacle considering its simplicity. In order to differentiate the nodes in the computational domain, 
node type is employed to donate the fluid node, boundary node of computational domain, boundary 

node of blocks and solid node. If particles in the solid node ( , )b i jx  of the fine block, will move to 

a fluid node along the direction αe  in the next step, values ( , , )i j α  should be stored in an array. 

The force can be calculated by 
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GPU implementation 

A graphical processing unit (GPU) is specifically designed to process large graphics data sets for 
rendering tasks. As GPU has a number of processing cores, so besides graphic rendering tasks, it 
also is used to implement other parallel computing tasks. In this work, the simulation is carried out 
on a CPU platform of Intel Xeon(R) W3550, 3.07GHz) with RAM of 24.0 GB and a NVIDIA 
GPUs device (Geforce 980ti), programming using CUDA (Compute Unified Device Architecture). 
 
In the CUDA programing architecture, CPU is considered to be the host, while GPU is considered 



to be the device. The code is split up into a CPU and GPU part, the latter is called kernel, compiled 
by NVIDIA C-Compiler (NVCC). When a kernel function is launched with required parameters, the 
number of blocks and the number of threads in each block (256 in this paper), it is executed by 
these threads on a device. In one block, each thread is indexed by a thread identification. Threads 
from different blocks cannot communicate, while threads from the same block are independent, but 
can communicate via shared memory and have synchronize execution. A kernel is executed in a grid 
of thread blocks indexed by a block identification. The grid terminates when all threads of a kernel 
complete their execution, and the execution continues on the host until another kernel is launched.  
 
The memory access of the kernel has a great influence on the implementation performance. The 
registers are trace buffer on GPU, and can be accessed with nearly no time delay, but is rather small, 
so excessive local variables used in kernel should be avoided. The global memory is a device 
memory and is the largest memory device in GPU, but not as fast as the registers. In this work, each 
node requires nearly 200 bytes of memory for double precision computation, so most of the data 
will be stored in the global memory. Besides, there is a share memory for each multiprocessor, 
allowing communication between threads, and can be accessed as fast as the registers. The constant 
memory, which can also be fast accessed, is used to store the constants that are read only and are 
accessed frequently. 
 
The LBM code is highly parallelizable since it can be separated into two main steps, streaming and 
collision [2]. In the collision step, the distribution functions of a certain node will not exchange with 
its neighbor, and the post-collision function is given by 

 1( , ) ( , ) ( , ) ( , )eqf t f t f t f tα α α ατ
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The streaming step is related to the distribution functions of the surrounding nodes according to Eq. 
(1) and Eq. (15). Considering the fact that misaligned read is faster than misaligned write[16], the 
streaming is carried out with the following equation 

 ( , ) ( , )f t t f t tα α αδ δ+ = −x x e  (16) 

To increases the efficiency of data communication, the collision and the streaming step are 
combined into one kernel to avoid repeated access of global memory for distribution functions.  
 
For systems containing multi-level blocks, according to the flow chart in Fig. 3, the computation 
can be expressed with a recursive function shown in Fig. 4. 
 



void evolution(int level)
{

for (int i=0; i<m[level]; i++)
{

if (level == LEVEL)
return;

if (!(level == 0 || i == 0))
{

//temporal interpolation
}
//stream, calculate macroscopic variables and collision
//information exchange between the present level blocks
if (level != LEVEL-1)
{

//spatial interpolation to prepare for blocks, level+1
}
evolution(level+1);
if (level != 0 && i == m[level]-1) 
{

//Transfer boundary information in blocks level+1 to level;
//Transfer the spatial interpolation values to level+1

}
}

}  
Figure 4. Program of the recursive function for MB-LBM 

 
Since there are always the same data types of variables needed to be record in each node, a struct 
body, including pointers to node type, position, density, velocity, distribution functions and 
post-collision distribution functions, is created to store variable information. With these pointers, 
memory in host and device is allocated dynamics for the variables.  
 

In the stage of the spatial interpolation, it is needed to obtain iM  in Eq. (10) and Eq. (11). In serial 

processing, the tridiagonal matrix in Eq. (11) is solved with the Thomas algorithm, which is almost 
unfeasible in parallel algorithm. The cuSPARSE library presented by NVIDIA contains a set of 
basic linear algebra subroutines used for handling sparse matrices in parallel mode. The function 
cusparseDgtsv() is employed in this paper. It can be used by cusparseDgtsv(cusparseHandle_t 
handle, int m, int n, const double *dl, double *d, double *du, double *B, int ldb), where handle is 
the handle to the cuSPARSE library context; m is the size of the linear system (must be larger than 

or equal to three); n is the columns of matrix B, which means iM  for different variables can be 

solve in a single call; array dl, d, du contain the lower, the main, the upper diagonal of the 
tridiagonal linear system, respectively; B is the right-hand-side array, ldb is the leading dimension 
of B. The solution will be written in array B before the function completes. 
 
It is obvious that the spatial interpolation in parallel is much more complex than the temporal 
interpolation, so it is suggested that the largest ratio of the lattice space between adjacent levels 
should be placed on the finest level. And in this work, the arrangement of levels is expressed in 
form of m1-…-mi-…-mn in coarse-fine order, where m1 is always 1, mi is the ratio of the lattice 
space of level i to that of level i-1. So as mentioned, the arrangement of levels 1-2-3 is better than 
1-3-2. 
 



In this work, all the procedures but output are completed on the GPU directly to eliminate the 
unnecessary copy between host and device. At the same time due to the fact that the atom function 
atomicAdd() in the CUDA toolkit provided by NVIDIA can only be used for Integer and Long, the 
parallel reduction is used to calculate the force in Eq. (14) after loading the position and direction. 

Presentation of test cases and discussion 

Lid driven cavity flow 

The lid driven cavity flow has been extensively used as a benchmark problem to test the accuracy of 
a numerical method. The computations are carried out using the multi-block computational domains, 
whose schematic diagrams are shown in Fig. 5. 
 
In all the arrangements, the finest blocks are placed on the areas of singularity points or changing 
sharply. As shown in Fig. 5, the finest blocks is located in the two upper corner regions. In Fig. 5(a), 
there are two levels of blocks and four separate blocks in the calculation. Block 1 and block 2 
belong to the first level; block 3 and block 4 belong to the second level; the diagram in Fig. 5(b) 
contains three levels and seven blocks, while block 1 belong to the first level, block 2 and block 3 
belong to the second level, and block 4 to block 7 belong to the third level. 
 
The simulation region is 128-128. The initial condition for density is unity and that for velocity is 
zero. The upper wall velocity is U = 0.1. All the boundaries uses the moving boundary half-way 
bounce-back scheme.  
 

  
(a) (b) 

Figure 5. Arrangements of blocks for the lid driven cavity flow 
 
To assess the results, the solutions of Ref. [17] and Ref. [18] are used for comparison. The 
dimensionless locations of the centers of the primary vortex, the lower left vortex and the lower 
right vortex of present work and of previous literatures are listed in Table 1. As shown in Table 1, 
all the results show a good agreement with previous researches. And for Re = 2000, different 
arrangements of blocks appear identical results. 
 



  
(a) Re = 100 (1-2) (b) Re = 1000 (1-4) 

  
(c) Re = 2000 (1-2-2) (d) Re = 2000 (1-2-4) 

 
(e) Re = 2000 (1-4-2) 

Figure 6. Streamlines for the lid driven flow 
 

Table 1 Comparison of the vortex centers with previous literatures [17][18] 

Re Arrangement Primary vortex Lower left vortex Lower right vortex 
100     

Present 1-2 (Fig. 5(a)) (0.6142, 0.7402) (0.0354, 0.0394) (0.9370, 0.0669) 
Ref. [17]  (0.6172, 0.7344) (0.0313, 0.0391) (0.9453, 0.0625) 

 



1000     
Present 1-4 (Fig. 5(a)) (0.5276, 0.5669) (0.0866, 0.0787) (0.8504, 0.1181) 

Ref. [17]  (0.5313, 0.5625) (0.0859, 0.0781) (0.8594, 0.1094) 
 

2000     
Present 1-2-2 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992) 

 1-2-4 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992) 
 1-4-2 (Fig. 5(b)) (0.5238, 0.5555) (0.0873, 0.1032) (0.8413, 0.0992) 

Ref. [18]  (0.5250, 0.5500) (0.0875, 0.1063) (0.8375, 0.0938) 
 

Flow past a circular cylinder 

A flow past a circular cylinder is simulated to implement the parallel algorithm in simulation 
domain that has more levels and blocks. 
 
The arrangement of the computational domain is shown in Fig. 7. There are four levels of blocks in 
the simulation. Block 1 to block 4 belong to the first level; block 5 and block 6 belong to level two; 
block 7 to block 9 belong to level 3; block 10 belong to level 4, the finest level. The ratio of the 
lattice space between adjacent levels is 1-2-2-2. 
 
In this calculation, the cylinder diameter D is set to 6. The length of the simulation region is 320, 
and the width is 128. The center of the cylinder is at (64, 64), which makes it located in the finest 
block, as shown in Fig. 7. The slip boundary scheme is implemented on the top and bottom 
boundaries. The standard bounce back scheme is used on the cylinder surface. The velocity and the 
pressure scheme of Zou and He are applied on the inlet and the outlet boundaries, respectively, 
where the far field velocity is U0=0.1 and the initial density is unity. The relaxation time for the first 
level grid is computed by Re=100, based on the far field velocity and the diameter of the cylinder. 
 
Drag coefficient, lift coefficient and Strouhal number are the benchmark dimensionless numbers for 
the flow past a circular cylinder. The drag and the lift coefficients are calculated using the following 

formulae, 2

2 D
D
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U Dρ

=  and 2

2 L
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= , and the Strouhal number is defined as aDSt
U

= , where 

LF  the lift force, DF  the drag force, D  the cylinder diameter, a  the frequency of 

vortex-shedding, obtained by processing LF  with Fast Fourier Transform. 
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Figure 7. Arrangement of blocks for the flow past a circular cylinder 

 

 
Figure 8. Velocity contour for the flow past a circular cylinder 
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Figure 9. Vorticity contour for the flow past a circular cylinder 

 
Table 3 Comparison of results at Re = 100 with previous literatures [19][20][21] 
Author CD CL St 

Silva [19] 1.39 - 0.16 
Zhou [20] 1.428 0.315 0.172 
Xu [21] 1.423 0.34 0.171 

This work 1.381 0.304 0.168 



 
The velocity contour for the flow past a circular cylinder is shown in Fig. 8. The instantaneous 
vorticity contours of vortex shedding are plotted in Fig. 9. It can be seen clearly that the vorticity is 
rather smooth across the block interface. This shows that the implementation of multi-block scheme 
functions well for unsteady flow. Table 3 shows our numerical results compare well with the 
previous results, despite little differences. 

Assess the performance of MB-LBM code on GPU 

The parameters of performance of MB-LBM on CPU and on GPU is shown in Table 2, including 
the time spending for evolution of 104 steps (in second), the number of lattice updates per step in an 
arrangement (LUPS), million lattice updates per second (MLUPS), and the acceleration ratio of 
GPU to CPU. In general, LUPS represents the amount of data, and a large MLUPS means a high 
data processing speed. 

 
Table 2 Performance of CPU and GPU for 104 steps 

Case Arrangement LUPS CPU GPU Acceleration 
ratio Time MLUPS Time MLUPS 

1 1-2 (Fig. 5(a)) 31267 205.66 1.52 64.52 4.85 3.19 
2 1-4 (Fig. 5(a)) 145691 1083.28 1.34 86.63 16.82 12.50 
3 1-2-2 (Fig. 5(b)) 300688 1894.23 1.59 245.59 12.24 7.71 
4 1-2-4 (Fig. 5(b)) 2090912 19543.09 1.07 498.00 42.00 39.24 
5 1-4-2 (Fig. 5(b)) 2326104 21736.04 1.07 659.12 35.29 33.00 
6 1-2-2-2 (Fig. 7) 790392 5835.10 1.35 578.71 13.66 10.08 

 
It can be seen from Table 2 that the ratio of acceleration is not a constant, and performance on GPU 
is always better than that of CPU. To be specifically, as the amount of data increases, roughly the 
speedup is more obvious. Besides, the arrangement of computational domain has great impact on 
the performance of GPU. In case 2 and case 3, the resolution of upper corners is the same, but on 
GPU the performance of case 2 is much better while with a smaller LUPS, so it is not recommended 
to employ more levels for the same resolution. In addition, according to the performance of case 4 
and case 5, considering the time consumed by spatial interpolation in MB-LBM, it is verified that 
the largest ratio of the lattice space between adjacent levels should be placed on the finest level.  

Conclusion 

In this paper, a straightforward multi-block LBM parallel algorithm based on a single GPU has been 
presented. The characteristics of MB-LBM algorithm are analyzed in detail. The benchmark cases 
of the lid driven cavity flow and the flow past a circular cylinder are investigated as the test cases 
for the GPU-based implementation, and satisfactory results are obtained. Performance on GPU is 
always better than that of CPU, and the greater the amount of data, the larger the acceleration ratio. 
And arrangement of computational domain has significant effects on the performance. The largest 
acceleration ratio 39.24 are achieved by now, however that still leaves room for a large rise in 
computation with large amounts of data. 
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