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Abstract 
Eigenvector analysis can be performed to determine the shapes and frequencies of the undampened 
free vibration modes of a system. These natural modes provide excellent insight into the behavior of 
a particular structure. Eigen vector analysis involves solving the generalized eigenvalue problem, 
which considers the stiffness and mass matrix of a structure. When a geometric nonlinear study 
must be performed, a situation that commonly occurs in the analysis of slender structures, nonlinear 
analysis or a more complete and rigorous evaluation that considers both parts of the total matrix is 
required. For instance, slender structures possess a small first frequency of vibration, less than 1 Hz, 
and can resonate due to wind excitation. The first frequency and shape of vibration are the most 
important parameters for calculating the response of a structure to environmental excitation. 
Therefore, when modal analysis depends on the stiffness of the structure, the effect of a reduction in 
stiffness on the modal shape of vibration must be determined. To this end, case studies were 
evaluated using the finite element method (FEM), considering and neglecting the geometric portion 
of the stiffness matrix. Mathematic functions were also applied for comparison. 
Keywords: Modal Shape, Geometric Stiffness, Nonlinear Analysis, Computational Simulation, 
Mathematic functions, Case Studies 

Introduction 
For structures with a first natural frequency less than 1 Hz, the dynamic effects of wind are too 
important to be considered as pure static effort or deterministic in nature, which would only provide 
a rough approximation. Regarding the importance of the dynamic effects of wind, Durbey and 
Hansen (1996) suggested that flexible structures vibrate in different modes, frequencies and shapes 
when excited by the wind. Further, they stated that the dynamic effect of wind may allow slender 
structures to display resonance. 
 
In many countries, models that consider the effects of wind in design structures are provided by 
governing codes. Many of these models consider that average wind speeds produce a static effect, 
whereas fluctuations or gusts of wind produce important oscillations, especially in tall 
constructions. When dealing with the dynamic response to the average wind speed, fluctuations are 
considered to occur in the band of the lower frequencies of the structure. This model of dynamic 
analysis was also considered by Simiu and Scalan (1996), who suggested that induced vibration 
analysis for floating loads was a necessary model component. Moreover, constructions with a basic 
period greater than 1 s and frequencies up to 1 Hz can undergo a floating response in the direction 
of the wind. Although the frequencies and vibration shapes of a structure should be considered, the 
most important parameter is the fundamental frequency. 

Modal analysis and vibration shapes 
A classical method for the dynamic analysis of a structure is modal analysis, in which sufficient 
information on the system or structure is obtained to reproduce their dynamics. Carrion et al. (2014) 
previously indicated that the natural frequencies (eigenvalues) and modes of vibration 
(eigenvectors) of the system are relevant information for classical modal analysis. Carrion further 
stated that a well-known concept used in the finite element method (FEM) is the stiffness matrix, 
which is used to relate the external forces applied at the nodes of the structural element to the nodal 
displacement.  
 
Structural dynamics can be employed to obtain solutions to homogeneous differential equations, the 
shape of which represents vibration modes that exist in the coordinate system at the same frequency 
range and occur harmonically in time. The equation describes the vibration of the system according 



to a normal mode of vibration and corresponds to the frequency. After deriving the solution twice 
with respect to time and canceling the harmonic function, the homogeneous algebraic equations 
shown in Eq. (1) were obtained. In the equation, ω2 are the eigenvalues, and Φ are the eigenvectors 
in the FEM environment. 

{ }2-   =  0K Mω     Φ      (1) 

[K] is the total stiffness matrix, which is composed of two parts, one being conventional, as shown 
in Eq. (2), the other being geometric, as shown in Eq. (3). [M] is the known mass matrix, pertaining 
to modal analysis with geometric nonlinear characteristics. When the mass matrix is a discrete mass 
distribution (lumped mass) of the structural system, a diagonal matrix containing the masses and 
moments of inertia for the nodal displacements is obtained. 
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The mathematic solution to the dynamic problem is a polynomial equation of degree n that contains 
the variable ω2 and is commonly known as the frequency equation. The n solutions for ωI are real 
and positive and are considered the natural frequencies of the system. The smallest frequency is 
typically denoted as ω1, while the largest frequency is denoted as ωn. Thus, n modes of vibration 
can be determined and collected in a modal n x n matrix, which contains columns representing the n 
modes of undampened, normalized free vibration (Brazil, 2004). Each pair of eigenvalues and 
eigenvectors corresponds to a frequency and mode of vibration for the system. To consider values 
and characteristic vectors equal in number to the nodal displacements of the system, Venancio Filho 
(1975) suggested that Eq. (1) can be written as follows: 

12 K Mω
−        Φ = Φ          (4) 

where [ω2] is the diagonal matrix of order n and consists of the natural frequencies squared, and [Φ] 
is an n x n matrix and contains columns corresponding to the normal modes of vibration. The term 
[K][M]-1 is a dynamic matrix, as previously mentioned by Blessmann (2005). 
 



The formulation corresponding to the previous exposition of the FEM is a geometric nonlinear 
formulation and is based on the geometric stiffness matrix. Geometric stiffness has been introduced 
in several analyses of the FEM when nonlinear effects or geometric nonlinearity (GNL) are 
considered. The interpolation functions normally used in FEM formulations to determine the full 
stiffness matrix are third-degree polynomials, such as those evaluated by Filho (1975) and Wilson 
and Bathe (1976). 
 
Computer models of actual structures were developed in the present study using a FEM-based 
computer modeling program, and modal analysis was performed linearly and nonlinearly to obtain 
the shape of the first mode of vibration. For comparative purposes, mathematic functions, such as 
the trigonometric function given in Eq. (5), the polynomial function given in Eq. (6), and the 
potential function given in Eq.(7). All of the functions were considered to be valid throughout the 
entire domain of the structure. 
 
Trigonometric function 
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Polynomial function 
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Potential function 

( ) xx
L

γ

ψ
 

=  
 

. (7) 

The value of γ was determined in the present research. 

Analysis of the first modal shape using case studies 
Extremely slender structures possessing frequencies of the first vibration mode less than 1 Hz were 
selected. Modal analysis was achieved using finite element models, according to SAP2000 
(integrated software for structural analysis and design, Analysis Reference Manual, Computer and 
Structures, Inc., Berkeley, California, USA), a commercial software package. Modal shapes for the 
structures were obtained linearly and nonlinearly. The procedure used to calculate the nonlinear 
modal shape considered geometric stiffness; therefore, the influence of axial loads was inserted in 
the stiffness matrix. The structures were modeled using bar elements with constant and variable 
cross sections, as appropriate. 

Structure with a slenderness index of 310 
The evaluated structure was 48 m high and possessed a hollow circular section with a variable 
external diameter (φext) and thickness (t). The slenderness index of the pole was set to 310. The 
geometric details are shown in Figure 1(b), where t is the thickness of the wall of each segment of 
the structure. The metal pole was used to support the transmission system for mobile telephone 
signals. Table 1 lists the structural parameters and existing devices on the structure, and Table 2 
specifies the structural properties and model discretization values.  
 

Table 1. Devices and weights on the structure 

Device Height Weight and distributed weight 
Pole from 0 to 48 m 7850 kN m-3 

Ladder from 0 to 48 m 0.15 kN m-1 

Cables from 0 to 48 m 0.25 kN m-1 

Antenna and supports 48 m 3.36 kN 
 



Table 2. Structural properties and discretization of the FEM model 

Height φext t Height φext t Height φext t Height φext t 
(m) (cm) (cm) (m) (cm) (cm) (m) (cm) (cm) (m) (cm) (cm) 

48.00 40.64 0.48 30.00 80.00 0.80 20.00 90.00 0.80 10.00 97.56 0.80 
46.00 40.64 0.48 29.00 80.00 0.80 19.00 90.00 0.80 9.00 105.11 0.80 
44.00 40.64 0.48 28.00 80.00 0.80 18.00 90.00 0.80 8.00 112.67 0.80 
42.00 65.00 0.80 27.00 80.00 0.80 17.00 90.00 0.80 7.00 120.22 0.80 
40.00 65.00 0.80 26.00 80.00 0.80 16.00 90.00 0.80 6.00 127.78 0.80 
38.00 65.00 0.80 25.00 80.00 0.80 15.00 90.00 0.80 5.00 135.33 0.80 
36.00 70.00 0.80 24.00 90.00 0.80 14.00 90.00 0.80 4.00 142.89 0.80 
34.00 70.00 0.80 23.00 90.00 0.80 13.00 90.00 0.80 3.00 150.44 0.80 
32.00 70.00 0.80 22.00 90.00 0.80 12.00 90.00 0.80 2.00 158.00 0.80 
31.00 80.00 0.80 21.00 90.00 0.80 11.00 90.00 0.80 1.00 165.56 0.80 

         0.00 173.11 0.80 
 
 

 
(a) Slender metallic pole 
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(b) Geometric details 

Figure 1. Slender metallic pole and its geometric details 
 
The modal shapes obtained by FEM and the aforementioned mathematic functions are provided in 
the graph shown in Figure 3. The exponent of the potential function that best fit the curve was equal 
to 1.965. 

Structure with a slenderness index of 256 
This investigated structure is a truncated cone metallic pole with 52 cm and 82 cm top and bottom 
diameters respectively. It is intended for the sustaining of the mobile phone broadcasting system.  It 
is 30 meters high, hollow section. The external diameter (φext) and thickness (t) vary along of the 
height. The assessed slenderness of the structure is 256. 
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Figure 2. Modal shapes of the structure with slenderness 310 

 
The structure data were acquired in the field. The diameters were measured with a metallic tape 
measure and the thickness with ultrasound equipment. For a given vertical line, several thickness 
measurements were carried out to obtain a relative average of the band. The union of the pole 
segments is formed by successive fittings, by placing and screw-fastening the metallic parts. Each 
superpositioning band has 20 cm length. In these joint areas, the thickness of the transverse section 
corresponds to the sum of the measures of the superpositioning bands, conform is indicated in 
Figure 3. In Table 3 it can be found the properties and the discretization used to model the structure. 
 

Table 3: Structural properties and discretization of the FEM model. 

Height φext t Height φext t Height φext t 
(m) (cm) (cm) (m) (cm) (cm) (m) (cm) (cm) 

30.00 52.00 0.60 20.00 62.00 0.60 10.00 72.00 0.76 
29.00 53.00 0.60 19.00 63.00 0,60 9.00 73.00 0.76 
28.00 54.00 0.60 18.10 63.90 0.60 8.00 74.00 0.76 
27.00 55.00 0.60 17.90 64.10 0.60 7.00 75.00 0.76 
26.00 56.00 0,60 17.00 65.00 0.60 6.10 75.90 0.76 
25.00 57.00 0.60 16.00 66.00 0.60 5.90 76.10 0.76 
24.10 57.90 0.60 15.00 67.00 0.60 5.00 77.00 0.76 
23.90 58.10 0.60 14.00 68.00 0.60 4.00 78.00 0.76 
23.00 59.00 0.60 13.00 69.00 0.60 3.00 79.00 0.76 
22.00 60.00 0.60 12.10 69.90 0.60 2.00 80.00 0.76 
21.00 61.00 0.60 11.90 70.10 0.76 1.00 81.00 0.76 

      0.00 82.00 0.76 
 
The metallic pole sustains two working platforms, one situated at 20 m height and the other at the 
superior extremity. There is still a set of antennas located at 27 m from the base and attached to the 
body of the pole through metallic devices. The platforms and the supporting devices follow the 
composition presented in Table 4 where φ designate the diameter of the platform. The local 
assessment revealed the presence of microwave (MW) antennas and of radio frequency (RF), which 
are listed with the rest of the structure accessories in  



Table 5. The data related to the antennas were obtained from the catalogue of the manufacturer. All 
the aforementioned devices represent additional masses and concentrated forces on the structure, as 
shown in  
Table 6, which presents the structural parameters and the parameters of the existing devices, the 
specific weight adopted for the material of the structure, the localized and distributed axial load. 
The geometry of the structure and the existing devices are schematically represented in Figure 3. In 
Figure 4 they are presented photographic images of the pole. 
 

Table 4. Composition of the platform and support 

Platform φ = 2.5 m Mass (kg) 
Floor sheet 116 

Lateral floor sheet 46 
Channel (U) 150 × 12.2 mm – Banister 96 

Angle (L) 102 × 76 × 6.4 mm – Banister 68 
Angle (L) 102 × 76 × 6.4 mm – Banister 77 

Angle (L) 102 × 76 × 6.4 mm – Floor support 43 
Platform lower ring 14 

Joints 3 
Banister bolts 5 

Angles (L) 152 × 102 × 9.5 mm – Platform lower support 33 
Total = 500 

Support set for antenna Mass (kg) 
Pipe φ = 1´ (25.4 mm) 6 

Angle (L) 203 × 152 × 19 mm 50 
Staples U (φ = 1´ = 25.4 mm) 1 

Top plate 1 
Total = 58 

 
Table 5. Composition of the localized nodal masses 

Device Mass 1st Plat (20 m) Support (27 m) 2nd Plat (30 m) 
(kg/unit) Quant. (kg) Quant. (kg) Quant. (kg) 

Antenna RF 2.6 m 19 2 37 3 56 1 19 
Antenna RF 1.23 m 4 1 4 0 0 1 4 

Antenna MW 19 2 38 0 0 0 0 
Platform 500 1 500 0 0 1 500 

Support for antennas 58 6 345 3 173 6 345 
Pipe φ = 1´ (25.4 mm) (Guide) 6 0 0 0 0 1 6 

Pipe φ = 3/4´ (19 mm) (LC) 6 0 0 0 0 1 6 
Total (kg) =   924   228  880 

    (LC = Lightning conductor, MW = Microwave, RF = Radio frequency, Plat = Platform) 
 

Table 6. Localized axial load and characteristics of the devices 

Device Frontal area Height Weight, distributed weight 
Pole Variable 0-30 m 77 kNm-3 

Ladder 0.05 m2/m 0-30 m 0.15 kN m-3 
Cables 0.15 m2/m 0-30 m 0.25 kN m-3 

1st Platform 2.60 m2 20 m 9.06 kN Antenna of the 1st platform 1.99 m2 
Intermediate antennas 2.11 m2 27 m 2.24 kN Intermediate supports 0.56 m2 

2nd Platform 2.36 m2 30 m 8.63 kN Antennas of the  2nd platform 0.90 m2 
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Figure 3.  Geometry – Measures in centimeters 
 
 

  
Figure 4. General photographic views 

 
 
The modal shapes obtained by FEM and by the mathematic functions can seem in graph of Figure 
5. The exponent of the potential function which best adjusts the curve is 1.85. 
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Figure 5. Modal shapes of structure with slenderness 256 

Conclusions 
In the present study, the shape of the first mode of vibration was investigated using case studies. 
Analysis by finite element method (FEM) was performed using two different procedures, including 
a linear procedure, where the geometric stiffness was not considered, and a nonlinear procedure, 
called the geometric nonlinear formulation (GNL), which considered the geometric stiffness. For 
comparison, several mathematic functions were studied, and all of the functions were valid 
throughout the entire domain of the structure. 
 
For the studied cases, geometric stiffness did not have a significant effect on the shape of the first 
mode of vibration, and the trigonometric function was shown to be a good approximation for the 
nonlinear vibration shape. The mathematic potential function also represented the first shape of the 
vibration. For the structure with a slenderness index of 310, the exponent of the function was equal 
to 1.965, while the structure with a slenderness index of 256 corresponded to an exponent of 1.865. 
With this information, the weight-averaged rate of slenderness (rs) was determined to be 
rs = 0.006812. Thus, an adequate exponent could be obtained by multiplying the slenderness index 
by rs.  For example, for a structure with a slenderness of 200, the exponent is equal to 1.36 (200 
times 0.006812). 
 
Finally, the polynomial function did not provide an accurate representation of the vibration shape of 
the first mode. 
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