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Abstract

We propose a novel algorithm for integrating the standard rate form of plasticity in which the
state variables are gradually returned onto the yield surface by a series of implicit plastic correc-
tion stages. Its features are discussed in relation to the Closest Point Projection Method (CPPM)
and the Cutting Plane Method (CPM). As in CPPM, it is straightforward to derive a consistent
tangent operator for the proposed method. Like in CPM, it uses the successive linearization
of the yield function about the current state to evaluate the state variables. The proposed inte-
gration method can be easily implemented in existing finite element analysis frameworks since
the required first and second order derivatives are similar to those required in CPPM. Several
numerical tests are performed using von Mises plasticity and linear hardening rules. Single ma-
terial point tests reveal that the proposed algorithm provides near identical stress remapping to
that of CPM and CPPM. For the classical perforated sheet benchmark with both linear isotropic
hardening and linear kinematic hardening, CPM, CPPM and the proposed methods produce
near identical results. For the combined hardening, a slight disparity between the results from
CPPM with the other two methods is observed. Further, the multi-element tests demonstrate
that the consistent tangent operator of the proposed method is on par with that of CPPM.
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1 Introduction

Recent advances in computing has made large scale simulations involving nonlinear analysis a
reality. Search for novel algorithms for nonlinear problems can contribute to optimally utilizing
the available computational resources by choosing suitable algorithm according to the simulated
phenomena and the computer hardware. One such nonlinear problem is classical plasticity.
Dependig on the required accuracy, involved phenomena, stability, parallel computing model,
etc. we can choose a suitable algorithm for integrating the rate-form of classical plasticity from
a number of algorithms available. Scalet and Auricchio [1] provides an excellent summary of
such classical and less classical methods used for stress integration.

Closest Point Projection Method (CPPM)[2] and the Cutting Plane Method (CPM)[3] are the
most popular classical algorithms used to predict the evolution of state variables such as stresses
and plastic internal variables. The earliest ideas about CPPM were set forth by Wilkins [2] and
subsequent contributions by several others have made this implicit algorithm, a very capable,
accurate, albeit a relatively computationally costly numerical integration scheme. The CPM
on the other hand, which was introduced by Ortiz and Simo [3], is an incomplete implicit al-
gorithm which follows the path of the steepest descent [4] to arrive at estimates for the state



variables during plastic deformations. Summarily, it could be said that for state variable remap-
ping, CPPM is computationally costly due to its reliance on the second order derivatives for
stress integration procedure, and CPM, in this regard, is computationally inexpensive. CPPM
uses a residual based approach to estimate the remapped stresses while CPM utilizes succes-
sive linearization of the yield functions at the current state to estimate the plastic consistency
parameter, thereby updating the state variables.Though computationally expensive CPPM is
unconditionally stable, while computationally light CPM is not.

In this study, having observed these classical methods, an attempt has been made to introduce
an implicit numerical integration scheme for rate independent plasticity, in which the state vari-
ables are gradually returned onto the yield surface by a series of implicit plastic correction
stages. Similar to CPM, in the proposed method, the state variables are evaluated by the suc-
cessive linearization of the yield function about the current state. For state variables remapping,
the proposed scheme also require second order derivatives, like in CPPM. However, the solu-
tion strategy is marginally lower in terms of computational cost to that of CPPM, per iteration
basis, for state variables remapping excluding the evaluation of the consistent tangent operator.
On the other hand, the proposed framework requires iterative update of elasto-plastic tangent
operator during material point iterations unlike in CPPM, which is evaluated only once during
material point iterations. However, the overall computational efficiency depends not only on
the computational cost for each of the material point iterations, but also on the accuracy of
the elasto-plastic tangent operator and how accurate a prediction can be made regarding the
evolution of state variables during material point iterations.

A brief summary of the classical theory of plasticity [5, 6] which is the basis for all of the three
stress integration algorithms, CPPM, CPM and the proposed method is presented in section 2.
The stress integration algorithms and the elasto-plastic tangent operators of CPPM, CPM and
the proposed method and a comparison of their features is presented in section 3. In this paper,
von Misses plasticity is used to study the accuracy and the performance of the newly minted
proposed stress integration algorithm with its consistent tangent operator, in relation to CPPM
and CPM methods. The verification problems considered and the results with a comparison are
presented in section 4.

We use ḟ to denote the time derivative of the quantity f and when quantities are represented
with two superscripts separated by a comma, i.e. (.)p,k, the first superscript p denotes the state
whereas the second superscript k denotes the material point iteration.

2 Classical Flow Theory of Plasticity

We consider classical flow theory [5, 6] based rate independent infinitesimal elasto-plastic de-
formations of an isotropic continuum subjected to suitable Dirichlet and Neumann boundary
conditions prescribed as a function of time t ∈ R+. The linearized Green strain tensor for the
induced infinitesimal deformation field u is defined as

ε = ∇symu (2.1)

Following Coleman [7], the history dependence of stress is quantified as

σ = σ (ε,κ) , (2.2)

where the internal plastic variable κ consists of hardening parameters such as the size of the
yield surface (isotropic hardening) and translation direction of the yield surface (back stress



in kinematic hardening). Further, we assume that that following assumptions of the classical
plasticity theory hold true.

1. Additive decomposition ε = εe+εp, where εe and εp are elastic and plastic contributions.

2. σ = C : εe, where C is the fourth order elastic tangent tensor. This implies

σ̇ = C : (ε̇− ε̇p) . (2.3)

3. The stress should always satisfy φ (σ,κ) ≤ 0, where φ (σ,κ) is a suitable convex scalar
function known as the yield criterion. Material behaves elastically when φ (σ,κ) < 0
and plastically when φ (σ,κ) = 0.

4. The evolution of ε̇p and κ̇ are defined by

ε̇p = λ̇m

κ̇ = λ̇A(σ,κ, εp)
(2.4)

where λ̇ (≥ 0) is the plastic consistency parameter,m = ∂ψ
∂σ

is the flow vector specifying
the direction of the plastic flow (where ψ is the plastic potential surface and for associa-
tive flow rules ψ = φ), and A(σ,κ, εp) is the generalized form of hardening modulus.
Furthermore, we can impose the consistency condition that λ̇φ̇ = 0 and Kuhn–Tucker
complementary conditions that λ̇ ≥ 0, φ ≤ 0, λ̇φ = 0 on the consistency parameter,
λ̇ and yield criterion, φ.

3 Stress Integration Algorithms and Elasto-plastic Tangent Operators

Due to their non-linear nature, numerical schemes are required to integrate the governing rate
forms of plasticity given by the Eqs. 2.3, and 2.4. Most of the available numerical methods
make different approximations for these rate forms to obtain numerical schemes with different
properties. In this section, we present the formulations of the widely used CPM and CPPM, and
a novel fully implicit return mapping stress integration algorithm in which the state variables
are gradually returned onto the yield surface by a series of implicit plastic correction stages.

For nonlinear finite element analysis using Newton-Raphson method, a material tangent opera-
tor is required to compute the element stiffness matrix. There are two tangent operators, such
as the continuum tangent operator and the consistent tangent operator. The continuum tangent
operator is constructed by making use of the satisfaction of the plastic consistency condition
stated in section 2, while the consistent tangent operator is consistent with the algorithm that
is used to compute the state variables. While the continuum tangent operator can be used as
the elastoplastic tangent modulus / operator in any numerical integration scheme, the consis-
tent tangent operator may not be available for some integration schemes. In this study, we also
present the formulation of a consistent tangent operator for the proposed algorithm. .

The non-linear nature of plastic deformation problems requires two levels of iterative solving us-
ing suitable numerical schemes; global-level iterations using a scheme such as Newton-Raphson
to determine displacement field of the domain, and material-level iterations to determine the re-
sulting state of stress using a scheme such as CPPM. In the following discussion, we assume that
we are at the (k+ 1)th material-level iteration of the (n+ 1)th load step (global-level iteration).



3.1 Cutting Plane Method (CPM)

The main characteristic of CPM is that it express all the state variable as a function of the plastic
consistency parameter ∆λ (i.e., σ = σ(∆λ) and κ = κ(∆λ)) and linearizes φ with respect to
∆λ around the current state (i.e. σk and κk).

CPM approximates σk+1 and κk+1 as

σk+1 =

σe = σn + C : ∆ε if k = 0
σk −∆λC : mk if k > 0

κk+1 =

κn if k = 0
κk + ∂κ

∂∆λ

∣∣∣k δλ if k > 0,

(3.1)

and expresses φ as a function of state variables at unknown state as φ
(
σk+1 (∆λ) ,κk+1 (∆λ)

)
=

0. To iteratively solve this nonlinear function, CPM linearizes φk+1 around the the current state(
σk,κk

)
as

φk+1 ≈ φk +
 ∂φ

∂σ

∣∣∣∣∣
k

: ∂σ

∂∆λ

∣∣∣∣∣
k

+ ∂φ

∂κ

∣∣∣∣∣
k

: ∂κ

∂∆λ

∣∣∣∣∣
k
 δλ = 0. (3.2)

Accordingly, δλ is determined as

δλ =
 ∂φ
∂σ

∣∣∣∣∣
k

: C : mk − ∂φ

∂κ

∣∣∣∣∣
k

: ∂κ

∂∆λ

∣∣∣∣∣
k
−1

φk (3.3)

and the state variables are updated as

σk+1 = σk + ∂σ

∂∆λ

∣∣∣∣∣
k

δλ

κk+1 = κk + ∂κ

∂∆λ

∣∣∣∣∣
k

δλ.

(3.4)

The above two steps are repeated until a suitable convergence criteria are met. Figure 3.1a
depicts the stress return (mapping) during local (material level) iterations when CPM is used
for numerical integration.



(a) CPM (b) CPPM (c) Proposed algorithm

Figure 3.1: Stress return mapping during CPM, CPPM and the numerical integration

The continuum tangent operator, which is generally used with CPM [4], is given by,

Cep = C− (C : m)⊗ (n : C)
n : C : m+ Kp , (3.5)

where n = ∂φ
∂σ

and Kp = −∂φ
∂κ

: ∂κ
∂∆λ

. A consistent tangent operator was introduced later to
CPM by Starmen et al. [8] which is not considered in this paper.

3.2 Closest Point Projection Method (CPPM)

The earliest ideas pertaining to CPPM were suggested by Wilkins [2] for von Misses plasticity.
Since then, various extensions such as application to linear isotropic and kinematic hardening
[9], nonlinear hardening [10] have been added to CPPM. CPPM is well reputed for its accuracy,
robustness and stability [4]. In contrast to CPM, CPPM regards the σ, κ and∆λ as independent
variables.

CPPM is based on the following approximations for the rate forms given by Eqs. 2.3, and 2.4.

σk+1 =

σe = σn + C : ∆ε if k = 0
σe −∆λk+1C : mk+1 if k > 0

κk+1 =

κn if k = 0
κn + A

(
σk+1,κk+1, ∆λk+1

)
if k > 0

(3.6)

The above expressions are nonlinear since the right hand sides are expressed in terms of the
unknown state variables σk+1, κk+1 and ∆λk+1. CPPM obtains an iterative scheme to solve
these nonlinear equations based on the following residuals.

rk+1
σ = σk+1 −

[
σe −∆λk+1C : mk+1

]
rκ

k+1 = κk+1 −
[
κn + A

(
σk+1,κk+1, ∆λk+1

)]
(3.7)

rk+1
φ = φ

(
σk+1,κk+1, ∆λk+1

)
Taking Taylor expansion about the solution at kth iteration, ignoring higher order terms, and
setting the residuals r(.)

(
σk+1,κk+1, ∆λk+1

)
= 0, we can obtain the following linear set of

equations for δσ, δκ, and δλ, which are the incremental updates of σ, κ, and ∆λ, respectively.



Note that we drop the superscripts and subscripts for convenience, and all the terms in the right
hand sides are evaluated at the solution of kth iteration. Here, Isym is the fourth order major
symmetric identity tensor.


δσ

δκ

δλ

 = −


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
C : m

−∂A
∂σ

Isym − ∂A
∂κ

− ∂A
∂∆λ

∂φ
∂σ

∂φ
∂κ

0


−1

rkσ
rkκ
rkφ

 (3.8)

Solving the above, we can incrementally update the state variables σk+1, κk+1 and ∆λk+1

as follows until requisite convergence criteria are met. Figure 3.1b depicts how the stress is
updated by the CPPM’s return mapping iterations.

σk+1 = σk + δσ
κk+1 = κk + δκ

∆λk+1 = ∆λk + δλ

(3.9)

Differentiating Eq. (3.6) and the yield criterion with respect to∆ε, we can obtain


∂σ
∂∆ε
∂κ
∂∆ε
∂∆λ
∂∆ε

 =


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
C : m

−∂A
∂σ

Isym − ∂A
∂κ

− ∂A
∂∆λ

∂φ
∂σ

∂φ
∂κ

0


−1 

C
0
0

 . (3.10)

The consistent tangent operator ∂σ
∂∆ε

for CPPM can be found by solving the above at the con-
verged state variables.

3.3 Proposed Method

As explained above, CPPM treats σ, κ and∆λ as independent variables, while CPM treats only
∆λ as the independent variable. Both the methods express φ as a function of the corresponding
independent state variables at the (k+ 1)th iteration, which are unknown. To solve the resulting
nonlinear equations, both the methods linearize sufficient number of fundamental expressions.
CPPM consisting of several independent variables, obtains three sets of linear equations by
linearizing the residues rσ and rκ given by Eq. 3.7 and φ, about σk, κk. On the other hand,
since CPM has only one variable, ∆λ, linearization of only φ about σk, κk produces sufficient
number of equations. CPM is known to be less stable, compared to the unconditionally stable
CPPM. While CPM uses a single constraint (equation) in the stress integration, the proposed
method imposes equal number of constraints to that of CPPM on the state variables and the
yield criterion by way of evaluating ∂σ

∂∆λ and ∂κ
∂∆λ of Eq. 3.2 at the unknown (k + 1)th state, in

addition to ∂φ
∂∆λ , thereby increasing the number of quantities evaluated at the unknown (k+1)th

state to that of CPM.

The proposed algorithm relies on the fact that the rates of stress (σ̇), back stress (α̇) and plastic
strain (ε̇p ) can be expressed as a function of λ̇ during plastic deformation. Expressing σ̇, α̇ and
ε̇pas a function of λ̇, we can obtain the following incremental forms of Eqs. (2.3), and (2.4).



σk+1 =

σe = σn + C : ∆ε if k = 0
σk −∆λC : mk+1 if k > 0

κk+1 =

κn if k = 0
κk + A

(
σk+1 (∆λ) ,κk+1 (∆λ)

)
if k > 0

(3.11)

Using Taylor expansion, we obtain a first order approximation about the current state, (.)k for
the yield function φ

(
σk+1 (∆λ) ,κk+1 (∆λ)

)
= 0 as

φk+1 ≈ φk + ∂φ

∂∆λδλ

0 = φk +
 ∂φ

∂σ

∣∣∣∣∣
k

: ∂σ

∂∆λ + ∂φ

∂κ

∣∣∣∣∣
k

: ∂κ

∂∆λ

 δλ. (3.12)

The above expression for ∂φ
∂∆λ and the partial differentiation of Eqs. (3.11) and (3.12) with re-

spect to ∆λ provide the following linear set of equations which can be solved for the unknowns
∂σ
∂∆λ , ∂κ

∂∆λ
and ∂φ

∂∆λ .


∂σ
∂∆λ
∂κ
∂∆λ
∂φ
∂∆λ

 =


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
0

−∂A
∂σ

Isym − ∂A
∂κ

0
∂φ
∂σ

∂φ
∂κ

−1


−1 

−C : m
∂A
∂∆λ

0

 (3.13)

δλ = −
(
∂φ

∂∆λ

)−1

φk (3.14)

Once ∂φ
∂∆λ is found, δλ can be found using Eq. (3.14), and the state variables can be updated as

σk+1 = σk + ∂σ

∂∆λδλ

κk+1 = κk + ∂κ

∂∆λ
δλ

∆λ = 0 + δλ = δλ,

(3.15)

until suitable convergence criteria are met.

Comparison of Eqs. 3.8 and 3.13 shows that the components in their right hand sides are
identical, except the CPPM’s residuals. In that respect, each material-level iteration of CPPM
and the proposed method requires identical computational effort. The properties of the last
column and row of the Eq. (3.13) allow us to uncouple and solve the linear system as two
independent systems for

{
∂σ
∂∆λ

∂κ
∂∆λ

}T
and ∂φ

∂∆λ , which slightly reduces the computational
effort compared to CPPM.

The novel proposed algorithm preserves the characteristics of CPM that it successively lin-
earizes the yield function at the current state to first estimate plastic consistency parameter
using the derivatives of the state variables with respect to the plastic consistency parameter and
then update the state variables. A pseudo code for the proposed algorithm is given in Algo-
rithm 1, and Fig. 3.1c depicts the updating of stress during the return mapping iterations of the
proposed algorithm.



Algorithm 1: A pseudo code of the proposed algorithm. η(.) is a suitable small number to
check the convergence of the quantity (.).
input :∆εn+1
output:∆εen+1: elastic portion of∆εn+1

κn+1: plastic internal variables
σn+1: state of stress after (n+ 1)th global-iteration
∂σ
∂∆ε

∣∣∣
n+1

: consistent tangent operator

// Elastic predictor
∆εen+1 = ∆εn+1; σ0 = σn + C : ∆εen+1; κ0 = κn;

if (φ (σ0,κ0) < 0) then // Check whether yielded
σn+1 = σ0; κn+1 = κ0; ∆εen+1 = ∆εn+1;
return;

else
// Initialize state variable for the iteration k = 1
∂σ
∂∆λ = −C : m0; ∂κ

∂∆λ
= ∂A

∂∆λ

∣∣∣0 ;

δλ =
(
∂φ
∂σ

∣∣∣0 : ∂σ
∂∆λ −

∂φ
∂κ

∣∣∣0 : ∂A
∂∆λ

)−1
φ (σ0,κ0) ;

σ1 = σ0 + ∂σ
∂∆λδλ; κ1 = κ0 + ∂κ

∂∆λ
δλ; ∆λ = 0 + δλ = δλ;

k = 1;

// Successively linearize φk+1 = φ(σk+1,κk+1) and update the state
variables

do  ∂σ
∂∆λ
∂κ
∂∆λ

 =
 Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ

−∂A
∂σ

Isym − ∂A
∂κ

−1  −C : m
∂A
∂∆λ

 ;

δλ = −
(
∂φ
∂σ

∣∣∣k : ∂σ
∂∆λ + ∂φ

∂κ

∣∣∣k : ∂κ
∂∆λ

)−1
φk;

// Update the state variables
σk+1 = σk + δσ; where δσ = ∂σ

∂∆λδλ;
κk+1 = κk + δκ; where δκ = ∂κ

∂∆λδλ;
∆λ = δλ;
k = k + 1; // increment the iteration index

while
((
φk ≤ ηφ

)
or (δσ < ησ) or (δκ < ηκ))

σn+1 = σk; κn+1 = κk;
return;



Consistent Tangent Operator

By differentiating the set of equations given in Eq. (3.11) and the yield criterion with respect to
∆ε, we can obtain,


∂σ
∂∆ε

∣∣∣k+1

∂κ
∂∆ε

∣∣∣k+1

∂∆λ
∂∆ε

∣∣∣k+1

 =


Isym +∆λC : ∂m

∂σ
∆λC : ∂m

∂κ
C : m

−∂A
∂σ

Isym − ∂A
∂κ

− ∂A
∂∆λ

∂φ
∂σ

∂φ
∂κ

0


−1 

∂σ
∂∆ε

∣∣∣k
∂κ
∂∆ε

∣∣∣k
0

 (3.16)

The components of the inverted matrix in the right hand side are also evaluated using the state
variables obtained at the end of the (k + 1)thiteration (i.e., the latest completed material-level
iteration). The above recursive relation is repeatedly applied at the end of each material-level
iteration, and the ∂σ

∂∆ε
obtained at the end of converged material-level iteration is the consistent

tangent operator of the proposed algorithm.

While CPPM requires solving Eq. (3.10) only once at end of converged material-level itera-
tions, the proposed requires recursively solving Eq. (3.16) at the end of each material-level
iteration. This extra amount of computational effort is one major disadvantage of the proposed
method compared to CPPM. As it will be demonstrated in the next section, both the CPPM
and the proposed methods require the same number of global-level iterations indicating that the
consistent tangent operators of both the methods perform equally.

3.4 Comparison of the Proposed Algorithm with CPPM and CPM

From the formulation of the proposed integration scheme, we can establish the main features of
the proposed integration scheme as,

• All three stress integration algorithms are implicit in the sense that in all three algorithms
the unknown variables are evaluated at the unknown state.

• Uses satisfaction of implicit constitutive relations (Eq. (3.11) and φk+1 = 0) to arrive at an
estimate for the plastic consistency parameter in contrast to the residual based approach
used in CPPM. Successive linearization of the yield function around the current state
is used to estimate the plastic consistency parameter using the derivatives of the state
variables with respect to the plastic consistency parameter.

• Unlike in CPPM, the plastic consistency parameter is not continuously updated in the pro-
posed method. Like in CPM, the plastic consistency parameter is found at each iteration
separately and is not carried to the next iteration by additive updates.

• Like in CPPM, the first and second order derivatives of the yield surface and the plastic
potential surface are used during the stress integration whereas in CPM only the first order
derivatives are used.

• A consistent tangent operator is available for global iterations which has to be updated
iteratively unlike in CPPM where the consistent tangent operator is evaluated explicitly
at the end of successful convergence of the state variables. Therefore, the evaluation of
the consistent tangent operator in the proposed method at the end of each material level
iteration adds additional computational cost in comparison to CPPM.



It is evident that there are key distinguishable features that separate the proposed integration
scheme from the veteran CPPM and CPM integration schemes. Further investigations are nec-
essary to establish the numerical stability and usability of the proposed scheme for generalized
plasticity models. In this paper, we consider the application of the proposed integration scheme
for limited use in the von Misses model.

4 Verification tests

In this section, the accuracy and convergence behaviour of the algorithm is assessed and com-
pared against CPPM and CPM, with two tests conducted using von Mises yield criterion. The
following form of the von Mises yield function is used in all of the numerical simulations pre-
sented in this section. Note that the Frobenius norm (‖.‖F ) of a second order arbitrary tensor,
A, is ‖A‖F =

√
A : A.

φ =
√

3
2 ‖s−α‖F − (σy,0 + AIe

p) (4.1)

Here, α is the back stress defined by Eq. (4.2) following Ziegler’s rule [11, 12],

α̇ = Ak (σ,α) ėp (σ −α) (4.2)

AK ,σy,0, and AI are kinematic hardening modulus (constant), initial yield stress, and isotropic
hardening modulus (constant). By virtue of setting different values for AK and AI , linear
kinematic hardening (AI = 0), linear isotropic hardening (AK = 0), and combined hardening
(AI , AK 6= 0) phenomena could be simulated. ep is the effective plastic strain which is a stress
integration algorithm dependent quantity and is defined as follows (here, ep is the deviatoric
part of plastic strain),

ep =
∫ t

0

√
2
3 ‖ė

p‖F dt (4.3)

For the proposed integration method, it follows from the incremental form representation of
plastic strain, εp,k+1 = εp +∆λmk+1, that (Here, d is the deviatoric part ofm),

ep,k+1 =

e
p
n if k = 0
epn +

√
2
3

∥∥∥ep,k +∆λdk+1
∥∥∥
F

if k > 0
(4.4)

Furthermore, we use the following incremental forms for back stress in each of the stress inte-
gration methods considered,

αk+1 =

αn if k = 0
αk + ∆λAK

σe

√
2
3

∥∥∥dk∥∥∥
F

Psd :
(
σk −αk

)
if k > 0,

CPM (4.5)

αk+1 =

αn if k = 0
αk + ∆λk+1AK

σe

√
2
3

∥∥∥dk+1
∥∥∥
F

Psd :
(
σk+1 −αk+1

)
if k > 0,

CPPM (4.6)

αk+1 =

αn if k = 0
AK

σe

√
2
3

∥∥∥ep,k +∆λdk+1
∥∥∥
F

Psd :
(
σk+1 −αk+1

)
if k > 0,

Proposed

(4.7)



Here, Psd = Isym − 1
3I ⊗ I is the fourth order isotropic tensor that converts any second-order

tensor into its symmetric-deviator form [13] and σe =
√

3
2 ‖s−α‖F .

Numerical tests are conducted for the following cases,

1. Single material point.

2. Uniaxial extension of a perforated sheet.

using all three stress integration algorithms CPPM, CPM, and the proposed method. The al-
gorithms were implemented in C++ with the matrix operations undertaken using the Eigen
library[14], a software library written in C++ for matrix computations.

4.1 Single material point

The accuracy of the proposed method is demonstrated using the semi-analytical solutions pro-
vided in Anandarajah [4] and Kim [15] for two problems, i.e., linear isotropic hardening and
combined hardening respectively. The two sets of material parameters used in the respective
problems are (Here, E is the modulus of elasticity and ν is the Poisson’s ratio),

1. Material 1: E = 200 GPa; ν = 0.3; AI = 20 GPa; AK = 0 MPa; σy,n = 0.25 GPa

2. Material 2: E = 2.4 GPa; ν = 0.2; AI = 70 MPa; AK = 30 MPa; σy,n = 300 MPa

For the linear isotropic hardening problem in Anandarajah [4] with the initial state, σn ={
0.1 0.05 0.075 0 0 0

}T
GPa and the applied strain increment,∆ε =

{
0.03 −0.028

0.01 0 00
}T

, Table 1 provides the remapped stresses obtained from the three numerical
integration schemes of interest. The results are compared against the semi-analytical solution
provided in Anandarajah [4] and the converged results obtained using CPPM by applying subin-
crements (using 1024 subincrements of the strain increment). The relative error in Table 1, ER,
defined by,

ER = ‖σnum − σref‖
‖σref‖

(4.8)

where σnum is the numerical integration result from the numerical integration without any
subincrementation and σref is the reference converged result obtained by applying CPPM using
subincrementation [16]. From the results, it is clear that no significant disparity exists between
the numerical integration results obtained from all three numerical integration schemes. Fur-
thermore, all stress integration algorithms took only a single material point iteration to produce
the following set of remapped results.



Table 1: Remapped stresses comparison - Linear Isotropic Hardening (Units are in GPa)

Stress Integration Scheme
components Semi-Analytical Subincrements CPPM CPM Proposed

σ11 2.51333 2.51297 2.51333 2.51333 2.51333
σ22 1.53615 1.53596 1.53615 1.53615 1.53615
σ33 2.17552 2.17607 2.17552 2.17552 2.17552
σ12 0 0 0 0 0
σ13 0 0 0 0 0
σ23 0 0 0 0 0
ER 0.000185 - 0.000185 0.000185 0.000185

Kim [13] provides a combined hardening problem with σn =
{

300 0 0 0 0 0
}T

MPa

as the initial state and the applied strain increment,∆ε =
{

0.1 −0.02 −0.02 0 0 0
} T

.
Table 2 shows the remapped stresses obtained from the three stress integration algorithms in re-
lation to the semi-analytical solution provided in Kim [13] and the converged results obtained
using CPPM by applying subincrements (using 1024 subincrements of the strain increment).
From the results, it is evident that all three stress integration algorithms provide identical es-
timates for the remapped stresses. As in the previous case, here also only a single material
point iteration was utilized by each of the stress integration algorithms to produce the following
remapped stresses.

Table 2: Remapped stresses comparison - Combined Hardening (Units are in MPa)

Stress Integration Scheme
components Semi-Analytical Subincrements CPPM CPM Proposed

σ11 385.16129 385.16129 386.65972 386.65972 386.65972
σ22 77.41935 77.41935 76.67013 76.67013 76.67013
σ33 77.41935 77.41935 76.67013 76.67013 76.67013
σ12 0 0 0 0 0
σ13 0 0 0 0 0
σ23 0 0 0 0 0
ER 3.37× 10−14 - 0.004583 0.004583 0.004583

4.2 Uniaxial extension of a perforated sheet

The overall performance of the proposed integration scheme (specifically the consistent tangent
operator) is evaluated and compared with CPPM and CPM (with continuum tangent operator)
on an elastoplastic homogeneous thin square shaped perforated sheet. The square sheet mea-
sures 20 mm a side, a thickness of 1 mm with a central circular hole of radius 1 mm. Considering
the symmetry of the sheet, we model only a quarter of the sheet with the appropriate symmetric
boundary conditions (Fig. 4.1a). A structured mesh with 1024 × 3 8-node brick elements and
4356 nodes is used.

The sheet is subjected to a uniform distributed load of magnitude 400 N/mm2 applied perpen-
dicular to the top edge as shown in Fig. 4.1a according to the cyclic loading history given in



Fig. 4.1b using load control. The total analysis time is 4.0 s with time step increments (∆t) of
0.1 s corresponding to 40 steps. We consider three three-dimensional problems using the same
mesh and boundary conditions, i.e., linear isotropic hardening, linear kinematic hardening, and
linear combined hardening. The set of material parameters used in the respective problems are
as follows,

1. Material 3: E = 206.9 GPa; ν = 0.29; AI = 10000 MPa; AK = 0 MPa; σy,0 = 450 MPa

2. Material 4: E = 206.9 GPa; ν = 0.29; AI = 0 MPa; AK = 10000 MPa; σy,0 = 450 MPa

3. Material 5: E = 206.9 GPa; ν = 0.29; AI = 5000 MPa; AK = 5000 MPa; σy,0 = 450
MPa

(a) Mesh and boundary conditions
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Figure 4.1: Three-dimensional perforated sheet.

We compare the three methods using the displacement measured at node A along the X - axis
direction(ux) during the loading and unloading cycles. We define time-step-wise percentage de-
viation (Er,dev%) metric as follows, which is used to illustrate the accuracy of a certain algorithm
with respect to the results from another reference stress integration algorithm.

Er,dev% = |dmethod − dref |
|dref |max

× 100% (4.9)

Here, dmethod is the displacement at a particular node obtained using the “method” (method
could be CPM, CPPM or Proposed) stress integration algorithm at a particular pseudo time step
where as dref is the displacement at the same node obtained using the reference method of stress
integration at a particular pseudo time step. |dref |max refers to the maximum absolute value of
displacement recorded at the same node obtained using the reference method from all the time
steps. All three stress integration implementations use the same convergence criteria for global
iterations and the local material point iterations.
4.2.1 Linear Isotropic Hardening and Linear Kinematic Hardening

Fig. 4.2a and Fig.4.3a depict the displacement vs load increment for linear isotropic harden-
ing and linear kinematic hardening conducted using material 3 and material 4 set parameters
respectively. All three stress integration methods give near identical results for both linear
isotropic hardening and linear kinematic hardening cases. This is evident from Fig. 4.2b and
Fig. 4.3b which show the percentage deviation with respect to results from CPPM for linear



isotropic hardening and linear kinematic hardening respectively. Fig. 4.2c and Fig.4.3c depict
the number of iterations taken by each of the stress integration algorithms during global iter-
ations for linear isotropic hardening and linear kinematic hardening respectively. As you can
see, the the proposed scheme and CPPM have consumed the same number of global iterations
(102 iterations) for linear isotropic hardening case. For linear kinematic hardening case both the
proposed scheme and CPPM have utilized the same number of global iterations (136 iterations).
The CPM takes a considerably large number of global iterations for linear isotropic hardening
case (256 iterations) as well as for linear kinematic hardening case (351 iterations) to give the
same comparable results.
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Figure 4.2: Perforated sheet - Isotropic hardening
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Figure 4.3: Perforated sheet - Kinematic hardening

4.2.2 Combined Hardening

The displacement vs load increment variation for combined hardening conducted using material
5 set parameters is shown in Fig. 4.4a. Here, we can observe that CPM and the proposed method
follow near identical trajectories where as CPPM exhibits a significantly different trajectory
after the 19thload step. This is evident from Fig. 4.4b which shows the percentage deviation
with respect to results from CPPM. Fig. 4.4c exhibits the number of iterations taken by each
of the stress integration algorithms during global iterations. Here, we can observe that the the
proposed scheme and CPPM record the same number of global iterations (116 iterations) where
as CPM consumes a considerably large number of global iterations (287 iterations) to give the
same comparable results.
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Figure 4.4: Perforated sheet - Combined hardening

5 Summary and Concluding Remarks

In this paper, a novel implicit stress integration algorithm which consists of some of the prop-
erties of CPPM and CPM is presented. In fact, the first and second order derivatives in the
proposed stress are the same as that of CPPM (see Eq. (3.7) and Eq. (3.13)). The proposed im-
plicit algorithm, uses satisfaction of implicit constitutive relations and successive linearization
of the yield function around the current state to arrive at an estimate for the plastic consistency
parameter required to update the state variables, in contrast to to the residual based approach
used in CPPM. The successive linearization of the yield function about the current state to
evaluate the state variables is a feature that the proposed stress integration scheme shares with
CPM. However, the proposed method imposes equal number of constraints (equations) to that
of CPPM by way of evaluating the derivatives of the state variables and the yield criterion with
respect to the plastic consistency parameter in contrast to the single constraint (equation) used
by CPM in the stress integration procedure. Further, unlike in CPM, it is straightforward to
derive a consistent tangent operator for the proposed method.

Several verification tests are performed using the von Mises yield criterion to verify the pro-
posed stress integration scheme and compare its performance in relation to CPPM and CPM.
Single material point tests are performed to verify the accuracy of the stress integration proce-
dure whereas the multi-element tests are carried out to verify and evaluate the performance of



the consistent tangent operator. In the context of von Misses model for material point iterations,
the following can be inferred,

• the stress integration results of the proposed algorithm are on par with the results from
CPPM and CPM for linear hardening rules.

• the computational cost associated with material point iterations (per iteration basis, when
evaluation of the consistent tangent operator is excluded) is lowest for CPM and highest
for CPPM where as the computational cost of the proposed scheme is marginally less than
CPPM. Since, only first order derivatives are required for CPM, it has the lowest compu-
tational cost. In the proposed scheme the number of linear simultaneous equations that
need to be solved per iteration is always one less than the number of linear simultaneous
equations that need to be solved for CPPM. This reduces the computational cost of the
proposed scheme marginally in comparison to CPPM.

In the context of von Misses model for global level iterations for linear hardening rules, the
following can be inferred,

• the accuracy of the global response results are on par with CPPM with the consistent
tangent operator and CPM with the continuum tangent operator.

• identical number of global level iterations to that of CPPM are required to obtain the
converged solutions. This implies that the consistent tangent operator obtained form the
proposed scheme is as good as the CPPM counterpart. CPM reporting the highest number
of global level iterations could be attributed to using the continuum tangent operator.

• the total computational cost per material point evaluation which includes the cost asso-
ciated with the stress integration as well as the consistent tangent operator evaluation, is
lowest for CPM and highest for the proposed scheme due to the iterative nature of the con-
sistent tangent operator of the proposed scheme. However, this disadvantage of solving
for the small (at most 13×13 for isotropic material) consistent tangent operator several
times during a material point iteration dwarfs in comparison to the advantage yielded
through the use of a consistent tangent operater at the global iterations due to second
order convergence.

From the results, it is evident that the proposed scheme is a viable alternative for elastoplastic
stress integration of von Mises plasticity as it provides comparable results to that of CPPM and
CPM. As the first and second order derivatives required in the stress integration procedure of the
proposed method are the same as that of CPPM, one can easily implement the proposed method
in existing finite element analysis frameworks. In the future, we plan to explore proposed
methods performance in simulating complex palsticty models like Drucker-Prager and Cam-
Clay.
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