
 

 

Studies on interface of pipe joints based on exponential softening bond-slip 

law under torsional loads 

 
Hong Yuan1, Jun Han1, *Ziyong Mo1, †Lan Zeng1 

1MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction 

Engineering, Jinan University, China 

*Presenting author: moxph33@163.com  

†Corresponding author: zenglan@jnu.edu.cn 

Abstract 

The mechanical behavior and debonding process of pipe joints’ interface are the key points for 

pipe system. In order to better understand and describe the debonding failure of pipe joints 

subjected to torsional loads for safety design, the theoretical and numerical studies have been 

conducted. Firstly, based on the exponential softening bond-slip law, the analytical expressions 

of the interfacial shear stress and the load-displacement relationship at loaded end were 

obtained. Thus the shear stress propagation and the debonding progress of the whole interface 

for different bond lengths could be predicted. Secondly, a simplified interface bond-slip law 

was used by changing the exponential softening law into a bilinear model. The analytical 

solutions for the simplified model were also obtained. Based on the analytical solutions, the 

influence of bond length and stiffness on load-displacement curve and ultimate load were 

discussed. The stress transfer mechanism, the interface crack propagation and the ductility 

behavior of the joints were further explained. 
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Introduction 

Pipe structures are a very important structural form for energy industry and construction 

industry. The limitations of the overall system performance usually come from the capacity of 

pipe joints [1]. Therefore, the pipe joints play the most important role in the overall integrity of 

most piping systems [2-4]. 

Based on the mechanics of composite materials and the maximum strain failure criterion, an 

analytical and experimental study was conducted to investigate the elastic and failure behavior 

of composite laminated pipe under torsion [5]. Based on the general composite shell theory, 

Zou et al. [6] studied the stress concentrations at and near the end of the joints as functions of 

various parameters, such as the overlap length, and thickness of the adhesive layer. Pugno et al. 

[7] confirmed that the maximum stresses were attained at the ends of the adhesive and that the 

peak of maximum stress was reached at the end of the stiffer tube and does not tend to zero as 

the adhesive length approaches infinity. Cheng [8] developed an adhesively bonded smart 

composite pipe joint system by integrating electromechanical coupling piezoelectric layers with 

the connection coupler. He et al. [9] studied the failure analysis for thermoplastic composite 

pipes under combined pure torsion and thermomechanical loading from operational thermal 

gradients. 

A finite element analysis was used to calculate the residual thermal stresses generated by 

cooling down from the adhesive cure temperature and a nonlinear analysis incorporating the 



 

 

nonlinear adhesive behavior was performed [10]. Based on a parametric study conducted by 

2D and 3D finite element analysis, Hosseinzadeh et al. [11-14] developed a simple method for 

assessing the behavior of adhesively bonded tubular joints under torsion. A finite difference 

method was utilized to solve the system of equilibrium equations and it was modeled as a 

separate 3D elastic body without the uniform stress assumption [15]. Considering individual 

and combined effect of internal pressure and torsional loadings, Baishya et al. [16] analyzed the 

failure process of the laminated composite tubes by finite element analysis. 

Studies of interfacial mechanical properties are mainly for simple shear model. Yuan et al. [17-

19] gave analytical solutions in closed-form of interfacial behavior of adhesive joints. Other 

researchers made some improvements by considering interfacial normal stress [20-23].  

The latest experimental study proposes that exponential softening may appear for interface of 

some bonded joints [24, 25]. Based on the exponential softening bond-slip law, this paper 

studies the interface behavior of pipe joints under torsion loads. Closed-form solutions are given. 

Interface model of pipe joint 

2.1. Interface model 

The inner and outer pipe is bonded together by a thin and soft adhesive layer shown in Fig. 1. 

Here the inner and outer pipe are defined as pipe 1 and 2 respectively. Due to symmetry, only 

the right half of the pipe joint is considered. We assume that the distance between the left end 

of pipe 1 and the right end of the pipe 2 is L. For the sake of clarification, the bond length in 

this paper is denoted by L for only the right half of the pipe joint is considered. 

 

(a) A cross-sectional view 

 

(b) A side view 

Fig. 1. Adhesively bonded pipe joint. 

Before starting the derivations, the following assumptions can be made for the simplicity of 

problems: 

(1) The adherents are homogeneous and linear elastic; 

(2) The adhesive is only exposed to shear forces; 

(3) The torsion load carried by the thin and soft adhesive layer is ignored and the external 

torsion load is assumed to be resisted by the main pipe and coupler pipe; 



 

 

(4) Local bending effects in the pipe joint under torsion load are neglected. 

According to the classical torsion theory, the internal torsion T1 and T2 of the pipe and the 

coupler can be expressed respectively as follows: 

 
1 1 1 1T G J=     (1) 

 
2 2 2 2T G J=    (2) 

Where G1 and G2, 1  and 2  are the shear modulus and the rotation angle of pipe 1 and pipe 

2 respectively; J1 and J2 are the polar moment of inertia of the thin-walled pipe 1 and pipe 2 

respectively written as follows: 

 3

1 1 12J R t=    (3) 

 3

2 2 22J R t=    (4) 

In which, t1 and t2 are the thickness of the thin-walled pipe 1 and pipe 2 respectively; R1 and R2 

are the average radius of pipe 1 and pipe 2 respectively (Figs. 1a). 

According to the assumption above, the torsion load carried by the soft and thin adhesive layer 

is ignored. Thus, the equilibrium between external and internal torsion load in the pipe joint 

requires: 

 
1 2 0T T+ =    (5) 

2.2. Governing equations 

If at the given cross-section, the rotations of pipe 1 and pipe 2 are different from each other, a 

relative rotation occurs accompanied by a circumferential relative displacement at the bond 

layer. Let’s introduce the relative interfacial rotation φ, which equals to the difference of the 

individual rotation angle of pipe 1 and pipe 2 at the cross-section x as illustrated in Fig. 2. 

Consider the torsional equilibrium in pipe 1 of an infinitely small section dx as illustrated in 

Fig. 2: 

 12 R Rdx dT  =    (6) 

 

Fig. 2. Equilibrium of the local interfacial shear stresses. 

Where τ is the interfacial shear stress along the circumferential direction and R is the distance 

between the center of the pipe and mid-height of the adhesive layer which can be calculated by: 
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    
= + + −    
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   (7) 

Denote this relative slip at the bond layer interface along circumferential direction as δ. This 

interfacial slip δ can thus be expressed as a function of the relative interfacial rotation φ as 

follow: 



 

 

 1 2R R R   = = −    (8) 

By introducing two parameters of local bond strength τf and interfacial fracture energy Gf, we 

have: 
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Substituting Eq. (10) into (1), the relationship of T1 and derivative of δ can be obtained: 
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Eq. (9) is the governing differential equation of the adhesive bonded joint in Fig. 2. When the 

local bond-slip model is found, this equation can be solved. 

2.3. Bond-slip model 

The exponential bond-slip law can be described as the dashed line in Fig. 3. The interfacial 

shear stress increases linearly to τf at which the value of the slip is denoted by δ1. It is called an 

elastic stage. Then interface softening appears and the interfacial shear stress decays 

exponentially with the interfacial slip. It is called a softening stage. The mathematical 

expressions of the interfacial bond-slip law in Fig. 3 are: 
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Fig. 3. Bond-slip models. 

The bilinear model shown as blue real line in Fig. 3 which features a linear ascending branch 

followed by a linear descending branch provides a close approximation. It is a simplified model 

of exponential softening model by letting Gf be equal. According to this model, the bond shear 

stress increases linearly with the interfacial slip which is the same as exponential model. 



 

 

Interfacial softening (or micro-cracking) then starts with the shear stress reducing linearly with 

the interfacial slip. The shear stress reduces to zero when the slip exceeds δf, signifying the 

shear fracture (debonding or macro-cracking) of a local bond element. This bond-slip model 

shown in Fig. 3 is mathematically described by the following: 
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The expression α2 which is a positive coefficient characterizing the exponential decay could be 

obtained by letting the interfacial fracture energy Gf in Fig. 3 be equal: 
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−
    (15) 

3. Analysis of the debonding process for the exponential model  

3.1. Elastic stage 

As small loads, there is no interfacial softening or debonding along the interface, so the entire 

length of the interface is in an elastic stress state. Substituting the relationship of Eq. (13) for 

the case of 0≤δ≤δ1 into (9), the following differential equation is obtained: 
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1 1( ) ( ) 0 (0 )x x     − =       (16) 

where 
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And the boundary conditions are: 

 1(0) 0 =     (18) 

 1

1 1

( )
T

L
G J

 =     (19) 

The solution of Eq. (16) for the relative shear displacement as well as the shear stress of the 

adhesive layer can be written in the form: 
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The slip at the loaded end (i.e. the value of δ at x=L) is defined as the displacement of the 

bonded joint and is denoted by Δ. According to this definition, the relationship of the load-

displacement can be obtained from Eq. (20): 
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3.2. Elastic-softening stage 

As the load increases, the interfacial slip reaches δ1 at the loaded end and softening appears at 

x=L, thus the whole interface is in an elastic-softening stage. The load T increases as the length 

of the softening region a increases. Substituting the relationship given in Eq. (13) into (9) gives 

differential equation (16) for the elastic region and the following equation (23) for the softening 

region. 
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where 
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With the boundary conditions of Eqs. (18), (19) and continuous conditions: 

 1( )L a − =     (25) 

 ( )x  is continues at x L a= −     (26) 

The solution for the elastic region of the interface (0≤δ≤δ1, i.e. 0≤x≤L-a) is given by: 
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and the solution for the softening region of the interface (δ>δ1, i.e. L-a≤x≤L) is shown as follows: 
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    (29) 
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Based on the conditions Eqs. (25) and (26), the constants c1 and c2 can be obtained: 
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The expression of slip at loaded end can be obtained from Eq. (29) when x=L: 
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    (35) 

Substituting Eqs. (19) and (29) into (10) yields: 
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For exponential model, the expression of T above can be rewritten as: 
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T reaches its maximum when L is large enough so Eqs. (37) and (33) converge to: 

 

2

12

2 f

u

f

R
T c

 

 
=     (38) 
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The length of the interface that is mobilized to resist the applied load is generally referred to as 

the effective bond length. This effective bond length is defined here as the bond length over 

which the shear stresses offer a total resistance which is at least 97% of the applied load for a 

joint with an infinite bond length. The effective bond length when Tu is reached can be obtained 

from Eqs. (34) and (37)-(39) to give: 
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3.3. Softening stage 

As the load increases, the peaks of shear stress move to the unloaded end (x=0). When the 

interfacial slip at x=0 reaches δ1, the whole interface enters into softening zone. This stage is 

governed by Eq. (23) with boundary conditions (18) and (19). 

Based on the boundary conditions, the solution for the interfacial slip and the shear stress of the 

adhesive layer can be written in the form: 
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where the constants c3 and c4 are shown as follows: 
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 4 0c =     (45) 

Substituting Eqs. (19) and (42) into (10) yields: 
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The expression of slip at loaded end can be obtained from Eq. (42) when x=L: 
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4. Analysis of the debonding process for the bilinear model 

4.1. Elastic stage 

The elastic stage is the same as the elastic stage in 3.1, thus the expressions of the interfacial 

slip, shear stress and the relationship of the load-displacement are the same. 

4.2. Elastic-softening stage 

As the load increases, softening commences at the loaded end once the shear stress reaches τf 

at x=L. The load T increases as the softening length a increases. Substituting the relationship 

given in Eq. (14) into (9) gives Eqs. (16) for the elastic region and (48) for the softening region. 
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With the same boundary conditions (18), (19) and continuous conditions (25), (26) used in 3.2. 

The solution for the elastic region of the interface (0≤δ≤δ1, i.e. 0≤x≤L-a) is the same as in 3.2. 

And the solution for the softening region of the interface (δ1<δ≤δf, i.e. L-a≤x≤L) is given by:  
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Substituting Eqs. (19) and (50) into (10) yields: 
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The expression of the slip at the loaded end could be got from Eq. (50) when x=L: 
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During this stage, the load-displacement curve could be drawn from Eqs. (52) and (53). When 

the interfacial slip increases to δf at x=L and the slip at x=0 less than δ1, we can get L>
π

2λ3
 and 

the interface enters into elastic-softening-debonding stage. When the slip at x=0 reaches δ1 and 

the slip at loaded end less than δf, we can get L<
π

2λ3
 and the interface enters into softening stage. 

Therefore, there exists a critical bond length to distinguish the coming failure process: 
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For bilinear model, T reaches its maximum when the derivative of Eq. (52) with respect to a 

equal zero. Therefore, a at the ultimate load can be found from the following relationship: 
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Substituting Eq. (55) into (52) yields: 
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It can be shown from Eq. (55) that for large values of L Eq. (56) converges to: 
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Based on same definition of effective bond length in 3.2 and considering that tanh(2)≈0.97, the 

effective bond length when Tu is reached can be obtained from Eqs. (55)-(57) to give: 
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where 
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4.3. L>Lcr 

4.3.1. Elastic-softening-debonding stage 

If L>Lcr, as the load increases the interfacial slip at loaded end reaches δf and debonding (or 



 

 

macro-cracking or fracture) commences and propagates along the interface. At the initiation of 

debonding Δ=δf and by making use of this condition, the corresponding value of a, denoted by 

ad, can be obtained from Eq. (53) as: 
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As debonding propagates, the peak shear stress moves towards the unloaded end. Assuming 

that the debonded length of the interface starting at the loaded end is d, Eqs. (27), (28), (50) and 

(51) are still valid if replacing L by L-d. Therefore, the load-displacement relationship can be 

written as: 
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As the interfacial shear stress at x=L-d is zero, the following relationship can be obtained: 
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Substituting Eq. (63) into (61) yields the following simplified form: 
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At the end of this stage, the softening-debonding stage starts when L-d=au. Substituting the 

relation into Eq. (63) yields: 
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Moreover, Eq. (64) can be written as: 
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4.3.2. Softening-debonding stage 

This stage is governed by Eq. (48) with boundary conditions of Eq. (18) and:  
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The following solution can thus be found: 
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It can be concluded from Eq. (69) that the length of softening zone remains constant during this 

stage. The load-displacement relationship can be simply obtained by displacement 

superposition along the bonded joint: 
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4.4. L<Lcr 

4.4.1. Softening stage 

As the load increases, the peaks of shear stress move to the unloaded end. When the interfacial 

slip at x=0 reaches δ1, the whole interface enters into softening zone. This stage is governed by 

Eq. (48) with boundary conditions of Eqs. (18) and (19). The following solution can be obtained: 
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The expression of the slip at the loaded end could be obtained from Eq. (73) when x=L: 
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5. Numerical simulations 

The typical inner diameter and thickness are assumed to be 290 and 10 mm for the main pipe, 

respectively. And the inner diameter and thickness of the coupler are assumed to be 311 and 15 

mm, respectively. The shear moduli G1 and G2 are assumed to be 28 GPa for both main pipe 

and coupler. The parameters for interfacial bond-slip laws are identified as: τf=7.2 MPa, 

δ1=0.034 mm, δf=0.16 mm. 

According to the material properties and geometry parameters given above, the critical bond 

length for bilinear model can be calculated as Lcr=85 mm. Therefore, bond length of 50 and 100 

mm are chosen. 

5.1. Load-displacement curves 

5.1.1. Load-displacement curves for exponential model 

The load-displacement curve for exponential model is shown in Fig. 4. OA, AB and BC are 

elastic, elastic-softening and softening stages, respectively. 



 

 

 

(a) L=50 mm                       (b) L=100 mm 

Fig. 4. Load-displacement curves for exponential model. 

5.1.2. Load-displacement curves for bilinear model 

When the bond length is shorter than Lcr, take L=50 mm and the load-displacement curve is 

shown in Fig. 5(a). OA, AB and BC are elastic, elastic-softening and softening stages, 

respectively. When the bond length is longer than Lcr, take L=100 mm and the load-

displacement curve is shown in Fig. 5(b). OA, AB, BC and CD are elastic, elastic-softening, 

elastic-softening-debonding and softening-debonding stages, respectively. The FEA results by 

using commercial software ABAQUS are also given for comparison in Fig. 4 and Fig. 5. In 

ABAQUS modelling, C3D8R, which is an 8-node linear brick element with reduced integration 

scheme, is used for both main pipe and coupler. And for adhesive layer, COH3D8, which is an 

8-node three-dimensional cohesive element, is used. 

 

(a) L=50 mm                       (b) L=100 mm 

Fig. 5. Load-displacement curves for bilinear model. 

5.2. Shear stress distribution 

The shear stress distribution for exponential model is shown in Fig. 6. When the load is small, 

the interfacial shear stress at loaded end is less than peak stress and the interface is in an elastic 

stage. When the interfacial shear stress reaches peak stress at loaded end, the interface enters 

into elastic-softening stage. As load increases, the peak stress moves from loaded end to 

unloaded end and the length of softening zone increases. When the interfacial shear stress at 

unloaded end reaches peak stress, the interface enters into softening stage. 



 

 

 

 

(a) L=50 mm 

 

 

(b) L=100 mm 

Fig. 6. Shear stress distribution for exponential model. 

The shear stress distribution of L=50 mm and L=100 mm for bilinear model are shown in Fig. 

7(a) and (b) respectively. When the load is small, the interfacial shear stress at loaded end is 

less than peak stress and the interface is an in elastic stage. When the interfacial shear stress 

reaches peak stress at loaded end, the interface enters into elastic-softening stage. As load 

increases, the peak stress moves from loaded end to unloaded end and the length of softening 

zone increases. When the interfacial shear stress at unloaded end reaches peak stress while Δ<δf, 

the interface enters into softening stage shown as in Fig. 7(a). When Δ=δf and the interfacial 

shear stress at unloaded end is less than peak stress, then the interface enters into elastic-

softening-debonding stage shown as in Fig. 7(b). The length of debonding zone increases as the 

peak stress moves to unloaded end. When the interfacial shear stress at unloaded end reaches 

peak stress, the interface enters into softening-debonding stage. 

 

 

(a) L=50 mm 



 

 

 

 

(b) L=100 mm 

Fig. 7. Shear stress distribution for bilinear model. 

5.3. Parametric study 

Fig. 8(a) shows the influence of bond lengths on the load-displacement curves for bilinear 

model. From the figure, the significant influence for bond length on the curves could be 

observed. In the range of the effective bond length, as the bond length increases, not only the 

interface failure processes change but also the ultimate load and interfacial slip. Specifically, 

the increase of the bond length can increase damage ductility. However, when the bond length 

reaches a certain length (effective bond length), the ultimate load will hardly change. Fig. 8(b) 

shows the influence of bond lengths on the load-displacement curves for exponential model. 

From the figure we know that the ultimate load increases as the bond length increases. But the 

failure processes are all the same. The increase of the bond length can also increase damage 

ductility. 

 

(a) bilinear model                        (b) exponential model 

Fig. 8. Load-displacement curves for different bond lengths. 

Fig. 9 shows the comparison of the load-displacement curves between the two models for 

different bond lengths. The load-displacement curves are different when a softening area exists. 

In addition, since there is no debonding initiation in the exponential model, the displacement 

can increase unlimitedly, with this being different from bilinear model in which the slip would 

approach δf. From the figures, the load increases faster in the bilinear model as the bond lengths 

increases. However, when the bond length is long, the ultimate loads between the two models 

seem no more difference. 



 

 

 

(a) L=25 mm                       (b) L=75 mm 

 

(c) L=125 mm                       (d) L=175 mm 

Fig. 9. Comparison of the load-displacement curves of the two models for different bond 

lengths. 

Fig. 10 shows the load-displacement curves for different ratios of torsion stiffness (β=

2 2 1 1G J G J ). From the figures we can see that as the ratio increases, the ultimate load increases 

but the slip decreases, namely the ductility reduces. 

 

(a) bilinear model                   (b) exponential model 

Fig. 10. Load-displacement curves for different ratios of torsion stiffness. 

Fig. 11 shows the relationship between effective bond length and ratio of torsion stiffness. From 

the figure we can see that a stiffer coupler leads to a longer effective bond length. But as the 

ratio getting larger, the effective bond length increases not obviously. As the ratio increases, the 

effective bond length of two models have the similar trend, but the effective bond length of 

exponential model is longer than that of bilinear model. 



 

 

 

Fig. 11. Effect of ratio of torsion stiffness on the effective bond length. 

Through the numerical computation, the ultimate load of exponential and bilinear models for 

different bond lengths could be obtained. Fig. 12 shows the ultimate load for different bond 

lengths. From the figure we can see that for bilinear model, when the bond length is short, the 

ultimate load increases significantly with the bond length. When the bond length is long, the 

ultimate load stays essentially unchanged. For the exponential model, when the bond length is 

short, the trend is similar to the bilinear model, but the ultimate load is relatively smaller. Both 

models have the same ultimate load when the bond length is relatively long. 

 

Fig. 12. The ultimate load of two models for different bond lengths. 

Conclusions 

On the basis of fully understanding the mechanical behavior of the pipe joints’ interface, this 

paper gives a further understanding of the key factors of interfacial debonding. By modifying 

the torsion stiffness, the present models may be further extended to orthotropic materials, such 

as fiber-reinforced composite pipe joints. Based on the derivations in the current study, some 

important conclusions are summarized as follows: 

  (1) Through the nonlinear fracture mechanics, the analytical expressions of the interfacial 

shear stress and the load-displacement relationship at loaded end of pipe joints under torsion 

loads could be got. Thus the shear stress propagation and the debonding progress of the whole 

interface for different bond lengths could be predicted.  

  (2) The influences of different bond length on the load-displacement curve and the ultimate 

load are studied through the analytical solutions. The stress transfer mechanism, the interface 

crack propagation and the ductility behavior of the joints could be explained. 
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