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Abstract 

Meshing plays an important role on the accuracy and convergence of CFD solvers. The 

accuracy includes quantitative measures such as discretization and truncation errors and 

qualitative measures such as drawing closed streamline, identifying singular points, 

asymptotic lines/planes, and (symmetry) axis. The current study builds on previous work by 

further demonstrating the accuracy of the three-dimensional adaptive mesh refinement 

method by comparing the accuracy measures between the ones derived from analytical 

velocity fields and those identified by the refined meshes. The adaptive mesh refinement 

method presented in this study is proposed based on the law of mass conservation for three-

dimensional incompressible or compressible steady fluid flows. The performance of the 

adaptive mesh refinement method is analysed using three-dimensional analytic velocity fields 

of four examples. The results provide evidence for the accuracy of the mesh refinement 

method in identifying the singular points, axes, and asymptote planes of the analytical 

velocity fields. 

Keywords: Adaptive mesh refinement, Computational fluid dynamics (CFD), 3D velocity 
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Introduction 

Discrete computational meshes are commonly employed in numerical high-performance 

computing modelling of physical processes to describe a specific problem's geometry or the 

general domain. To provide the requisite computation accuracy, discrete meshes are subjected 

to stringent requirements regarding the level and quality of discretization. Moreover, the 

simulation of computational fluid dynamics (CFD) problems is often largely reliant on mesh 

size for convergence and accuracy [1]. In many circumstances, the mesh size required grows 

to such proportions that the task becomes intractable for the computer resources available. For 

example, predicting the vortex trajectory of a large-scale flow, such as a tropical cyclone, may 

necessitate resolving the flow within and around the storm [2]. Furthermore, resolving 

localized features like vortex centers demands high resolution in areas where the numerical 

solution varies rapidly [3]. Such challenges can be addressed by adaptively refining the mesh 

during time-stepping. 

 

There are three common adaptive techniques in CFD to reduce and control numerical error, 

such as local refinement and coarsening, known as h-refinement, adjusting the local order of 

discretisation of the numerical method, known as p-refinement, or optimising the distribution 

of the computational nodes via grid relocating or moving, known as r-refinement [4]. Other 

quantitative refinement approaches, such as numerical entropy generation schemes and weak 



local residuals, include refinement and coarsening indicators [5][6]. To dynamically obtain 

high accuracy in a domain of interest based on some pre-defined criteria, the h-adaptivity 

technique is used in adaptive mesh refinement (AMR) [7]. Since the initial work by Berger 

and Oliger [8] on the application of block-structured AMR to two dimensional (2D) 

hyperbolic partial differential equations, the AMR approach has been widely extended to 

several multiscale domains of CFD [9]-[12]. AMR techniques have been effectively 

employed to minimize computational time and memory requirements for numerous 

applications in computational fluid dynamics (CFD), computational structural dynamics 

(CSD), and other fields of computational mechanics [4]. 

 

This study uses the AMR method proposed by Li [13][14] to refine a given mesh based on the 

three-dimensional (3D) velocity fields computed numerically. The AMR method in [13][14] 

is derived from a theorem in the qualitative theory of differential equations (Theorem 1.14, 

page 18, Ye [15]) for accurate numerical computation of 2D and 3D velocity fields. The 

refinement process can be repeated as many times as necessary until the desired level of 

accuracy or a certain threshold is reached. The mesh refinement technique [13][14] has 

previously been verified using the accurate locations of singular points, asymptotic lines, and 

closed streamlines [16]-[18]. Moreover, the accuracy of the 2D AMR method has also been 

verified against the commonly used CFD benchmark experiments such as the lid-driven 

cavity flow [19]-[22], the 2D unsteady flow past a square cylinder [23], and the backward-

facing step flow [24]. Additionally, the AMR proposed by Li [13][14] has been shown to 

capture the centre of vortices within the refined cells of once refined meshes and within the 

twice refined cells after applying the AMR algorithm twice [21][25].  

 

This paper builds on Li’s [13] work by further demonstrating the accuracy of the 3D AMR 

method. Since the error of CFD simulation comes from both the error of numerical methods 

and the error of meshing, we demonstrate the accuracy of the AMR method using the 

computational velocity fields without computational errors; that is, the computational velocity 

fields are calculated by substituting the coordinates of the nodes of a mesh into analytical 

velocity fields. We show the accuracy of the 3D AMR method by comparing the accuracy 

measures between the analytical velocity fields and the refined meshes. We provide four 

examples of 3D AMR using 3D analytic velocity fields from [26]. The four examples 

presented in this paper provide evidence for the accuracy of the mesh refinement method in 

identifying the singular points, axes, and asymptote planes of the analytical velocity fields. 

 

The Mass Conservation Conditions for Linear Interpolations of Vector Fields Over 

Tetrahedral Domains 

 

The 3D AMR method is an extension of the 2D AMR method [14] derived from a theorem in 

the qualitative theory of differential equations [15].  

 

The continuity equation for incompressible or steady-state fluid is 

∇. 𝑽 = 0 

which is the statement of the law of mass conservation.  

 

Let 𝑽𝑙 be the linear interpolation of the values at the four vertices of tetrahedra in the domain 

of the velocity field. It follows that for every tetrahedron, the velocity field can be computed 

as 

 𝑽𝑙 = 𝑨𝒀 + 𝑩′ 



where 𝑨 = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

), 𝑩′ = (

𝑏1
′

𝑏2
′

𝑏3
′

), and 𝒀 = (

𝑦1

𝑦2

𝑦3

) is a matrix of constants, vector of 

constants, and the vector of spatial variables, respectively.  

 

𝑽𝑙 is unique if the volume of the tetrahedron is not zero [16]. Substitution of 𝑽𝑙 into 𝑽 of the 

continuity equation gets 

𝛻 ⋅ 𝑽𝑙 = trace(𝑨) = 0   (1) 

for incompressible or steady-state fluid. However, the interpolated numerical velocity vector 

field 𝑽𝑙 generally does not satisfy Eq. (1).  

 

Let 𝑓 be a scalar function of spatial variables 𝑦1, 𝑦2, and 𝑦3. We assume that 𝑓𝑽𝑙 satisfies the 

continuity equation 

𝛻 ⋅ (𝑓𝑽𝑙) = 0 

and then calculate the expressions of 𝑓. Solving the above equation for the eight different 

Jacobian forms of the constant matrix 𝑨 results in eight distinct expressions of the function 𝑓 

that are given in Table 1 [13]. In Table 1, (𝑦1, 𝑦2, 𝑦3)𝑇 = 𝑽−1𝑿 and (𝑏1, 𝑏2, 𝑏3)𝑇 = 𝑽−1𝑩 

where 𝑽 satisfies  𝑨ℑ = 𝑽ℑ, and ℑ is one of the Jacobian matrices in Table 1. The Jacobian 

forms of the constant matrix 𝑨 and corresponding expressions of 𝑓 for the eight cases in 

which the linear interpolations of the vector fields over tetrahedral domains do not hold the 

law of mass conservation is summarized in Table 1. 

 

For 𝑓 ≠ {0, ∞}, the vectors 𝑽𝑙 and 𝑓𝑽𝑙 produce same streamlines (for more details we refer 

the readers to Section 2.2 of [17].  

The conditions (SH) for subdividing a hexahedron are as follows: 

- for a hexahedron shown in Fig. 1, subdivide it into five tetrahedra as shown in Fig. 2. 

- calculate the Jacobian form of 𝑨 in 𝑽𝑙 = 𝑨𝒀 + 𝑩′ for each of the five tetrahedra, 

respectively.  

- if there exist at least one of the five expressions of 𝑓 corresponding to the particular 

Jacobian of 𝑨 in Table 1 equalling zero or infinity, at some points on the 

corresponding tetrahedra, subdivision is performed on the hexahedron. 

 

 

 

 

           Fig. 1. A hexahedral cell.          Fig. 2. Tetrahedral subdivision of a hexahedron. 

  



Table 1. Jacobian forms of the constant matrix 𝑨 and expressions of 𝒇 for all possible 

cases of a non-mass conservative linear field. 

 

Case Jacobian (ℑ) 𝑓 

 

1 (
𝑟1 0 0
0 𝑟2 0
0 0 𝑟3

) 

(0 ≠ 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 0) 

 

(𝑦1 +
𝑏1

𝑟1
)

−1

(𝑦2 +
𝑏2

𝑟2
)

−1

(𝑦3 +
𝑏3

𝑟3
)

−1

 

 

2 (
𝜇 𝜆 0

−𝜆 𝜇 0
0 0 𝑟

) 

(𝑟 ≠ 0, 𝜆 ≠ 0) 

{(𝑦1 +
𝜇𝑏1 − 𝜆𝑏2

𝜇2 + 𝜆2
)

2

+ (𝑦2 +
𝜆𝑏1 + 𝜇𝑏2

𝜇2 + 𝜆2
)

2

}

−1

(𝑦3 +
𝑏3

𝑟
)

−1

 

 

3 (
𝑎 𝛿 0
0 𝑎 0
0 0 𝑟

) 

(𝑎 ≠ 0, 𝑟 ≠ 0) 
 (𝛿 = 0 or 1) 

 

(𝑦2 +
𝑏2

𝑎
)

−2

(𝑦3 +
𝑏3

𝑟
)

−1

 

 

 

4 

(
𝜇 𝜆 0

−𝜆 𝜇 0
0 0 0

) 

(𝜆 ≠ 0) 

{(𝑦1 +
𝜇𝑏1 − 𝜆𝑏2

𝜇2 + 𝜆2
)

2

+ (𝑦2 +
𝜆𝑏1 + 𝜇𝑏2

𝜇2 + 𝜆2
)

2

}

−1

 

 

 

5 

(
𝑟 𝛿 0
0 𝑟 0
0 0 0

) 

(𝑟 ≠ 0, 𝛿 = 0 or 1) 

 

(𝑦2 +
𝑏2

𝑟
)

−2

 

 

 

6 

 

 

(
𝑟 𝛿 0
0 𝑟 𝛿
0 0 𝑟

) 

(𝑟 ≠ 0, 𝛿 = 0 or 1) 

 

(𝑦3 +
𝑏3

𝑟
)

−3

 

 

 

7 

(
𝑟 0 0
0 0 𝛿
0 0 0

) 

(𝑟 ≠ 0, 𝛿 = 0 or 1) 

 

(𝑦1 +
𝑏1

𝑟
)

−1

 

 

 

8 

(
𝑟1 0 0
0 𝑟2 0
0 0 0

) 

(0 ≠ 𝑟1 ≠ 𝑟2 ≠ 0) 

 

(𝑦1 +
𝑏1

𝑟1
)

−1

(𝑦2 +
𝑏2

𝑟2
)

−1

 

 

The Adaptive Mesh Refinement Method 

 

In practice, an unstructured mesh is typically employed, with most of the elements being 

hexahedra. The adaptive refinement approach is applied to every element in a mesh. A 

hexahedron to which the conditions (SH) applies can be decomposed into five or six 



tetrahedra [27][28]. We divide a hexahedron into five tetrahedra in this study. The following 

algorithm describes how to refine a hexahedral cell in a mesh using the conditions (SH). 

 

The refinement process of a hexahedral cell: 

1) Subdivide the hexahedron into five tetrahedra and check if 𝑽𝑙 satisfies the law of mass 

conservation on all five tetrahedra. If yes, no refinement for the hexahedron is 

required. If no, proceed to Step 2. 

2) Apply the conditions (SH) to all tetrahedra. If the conditions (SH) are not satisfied on 

all tetrahedra, no subdivision is required. Otherwise, the cell is subdivided into a 

number of small elements such that the lengths of all sides of the small elements are 

truly reduced (e.g. half). Fig. 3 is an example that subdivides a hexahedron into eight 

smaller hexahedra by connecting the mid points of opposite sides on each of the six 

faces and 𝑂1𝑂3, 𝑂2𝑂4, 𝑂5𝑂6. The new nodes are 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, 𝐴𝐷, 𝐴𝐸, 𝐵𝐹, 𝐶𝐺, 𝐷𝐻, 

𝐸𝐹, 𝐹𝐺, 𝐺𝐻, 𝐸𝐻 and 𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5 , 𝑂6, 𝑂 as shown in Fig. 3.  

 

The following is the algorithm of the adaptive mesh refinement method. 

Algorithm of adaptive mesh refinement: 

1. Let 𝑇 = 0. 

2. Calculate the values of a velocity field at nodes of an initial hexahedral mesh.  

3. Perform the refinement process one by one for all cells in initial mesh and let 𝑇 = 𝑇 +
1. 

4. Take the smaller hexahedra in the subdivided hexahedra in Fig. 3 as new cells of the 

initial mesh by replacing the cell in Fig. 1 if a cell is refined in Step 3. Otherwise, keep 

the cell in Fig. 1 in the initial mesh.  

5. Repeat steps 2-5 until a pre-specified threshold number 𝑇 is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Subdivision of a hexahedron into eight small hexahedra. 
 

In this study, we calculate the values of a velocity field in Step 2 of the algorithm at a point by 

substituting the coordinates of the nodes into the analytical velocity field. Since the number of 

refinements can be performed infinite times, we introduce a threshold number 𝑇 in the 

algorithm. The choice of 𝑇 depends on the required accuracy of the mesh, capacity of 

computers, or computational time. 
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Results 

 
Four examples of 3D analytical velocity fields are shown here to demonstrate the 

effectiveness of the adaptive mesh refinement method. In these examples, the 3D analytical 

velocity fields, adopted from [26], are used to show that the values at the nodes of the refined 

meshes can present the fields very well by comparing the features shown in the refined 

meshes with the exact results. As the refinement process can be repeated as many times as 

necessary to achieve the desired level of accuracy or a certain threshold, we choose 𝑇 as an 

integer. A higher threshold number, 𝑇, furnishes higher accuracy of numerical results based 

on the values at the nodes of the refined meshes.  

 

Li [13] considered a different toroidal flow from the one considered in this paper. In [13], 

streamlines were drawn using the computational velocity fields on a refined mesh obtained by 

substituting the coordinates of nodes of the refined meshes into the analytical velocity field. 

For an exact closed streamline of the toroidal flow, a seed point was selected on the exact 

streamline. Then a streamline was drawn using the computational velocity field on a refined 

mesh, and the difference between the seed point and the end point (the 𝑥 coordinate is the 

same as the 𝑥 coordinate of the seed point) was compared. The distances between the seed 

and end points are smaller when the threshold number 𝑇 is bigger.  

 

In this section, we use four examples to provide evidence for the accuracy of the adaptive 

mesh refinement method in identifying the other qualitative measures for the accuracy of 

computational velocity fields.  

 

Example 1: Helical flow 

 

Velocity field: 𝑽 = (−4𝑦, 𝑥, 0.5). 

 

Fig. 4 shows the initial mesh and three exact streamlines. These lines spiral around the 𝑧-axis. 

The variation of velocity fields at the points close to 𝑧-axis is smaller. Hence, more accurate 

computational velocity fields or a finer cell size are required for drawing accurate streamlines 

at the points close to the 𝑧-axis. 

 

 
Figure 4.  Initial mesh and the exact streamlines of helical flow. 

 



Fig. 5 shows the refined mesh with the three streamlines. The cell sizes are smaller when cells 

are closer to 𝑧-axis. Fig. 6 shows the projection of refined mesh and the three streamlines on 

𝑥𝑦 and 𝑦𝑧-planes. The projection on the 𝑦𝑧-plane indicates clearly that the cell sizes are 

getting smaller when cells are closer to the 𝑧-axis. The projection on the 𝑥𝑧-plane is the same 

as that on the 𝑦𝑧-plane. The projections of the three streamlines on the 𝑥𝑦-plane are circles. 

The projection on the 𝑥𝑦-plane again demonstrates that the cell sizes are getting smaller when 

cells are closer to the 𝑧-axis. This example demonstrates that the adaptive mesh refinement 

method can identify an axis accurately.  

 

 
Figure 5.  Refined mesh for 𝑻 = 𝟕 and streamlines of helical flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Projections of the graph in Fig. 5 on 𝒚𝒛 (left) and 𝒙𝒚 (right) planes. 

 

Example 2: Saddle-spiral flow 

 

Velocity field: 𝑽 = (−0.25𝑥𝑧 − 5𝑦, −0.25𝑦𝑧 + 5𝑥, −0.25𝑧2) 

 

Fig. 7 shows the initial mesh and two exact streamlines of the velocity field. The streamline 

on the top of 𝑥𝑦-plane spirals down around the 𝑧-axis and gradually approximates the plane 

but never intersects with the plane. The streamline below 𝑥𝑦-plane spirals up around 𝑧-axis 

and approximates the plane closer and closer but never intersects with the plane. Therefore, 

 



𝑥𝑦-plane is asymptotic plane. Since the variations of velocity fields at the points closer to 𝑧-

axis and 𝑥𝑦-plane are smaller, the cell sizes must be smaller for drawing more accurate 

streamlines. Fig. 8 demonstrate that the finer cell size is closer to the 𝑧-axis and 𝑥𝑦-plane. 

This example demonstrates that the adaptive mesh refinement method can identify axes and 

asymptotic planes. The singular point of this velocity field is the origin, and it is also 

identified in the refined mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  The initial mesh and the exact streamlines of Saddle-spiral flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  The refined mesh for 𝑻 = 𝟓 and the streamlines of Saddle-spiral flow. 

 

Example 3: Toroidal flow 

 

Velocity field: 

𝑽 = (
−𝑥(𝑧 − 4)

𝑟2
−

20𝑦(𝑟 − 2)

𝑟
,
−𝑦(𝑧 − 4)

𝑟2
+

20𝑥(𝑟 − 2)

𝑟
,
𝑟 − 2

𝑟
) 

where 𝑟 = √𝑥2 + 𝑦2.  

 

Fig. 9 shows an exact streamline. When points are close to the 𝑧-axis, the velocity field at 

some of these points varies considerably, and when 𝑟 is around 2, the variation of the 



𝑧 component of velocity field is small. Therefore, we need a mesh with finer cells close to the 

𝑧-axis and around 𝑟 = 2. 

 

 
Figure 9.  An exact streamline for Toroidal flow. 

 

The refined mesh was generated for 𝑇 = 5. The projections of the refined mesh on the 𝑦𝑧- 

and 𝑥𝑦-planes are shown in Fig. 10. 

 

  
 

Figure 10.  The projection on 𝒚𝒛 of the refined mesh with the streamline (left) and the 

projection on 𝒙𝒚 plane (right). 

 

The projection of the refined mesh on the 𝑥𝑦-plane shown on the right in Fig. 10 demonstrates 

that the cells sizes are getting smaller and smaller when 𝑟 approaches 2 and cells are closer to 

the 𝑧-axis. The left figure in Fig. 10 shows that the refined cells are in the whole range of 𝑧 

coordinate in the domain. This example demonstrates that the adaptive mesh refinement can 

identify the areas where the velocity fields vary dramatically in value.  

 

Example 4: Unstable focus-stretching flow 

 

Velocity field: 𝑽 = (
−𝑥

2
− 40𝑦,

−𝑦

2
+ 40𝑥, −𝑧).  

 
Fig. 11 shows three exact streamlines. All streamlines spiral around the 𝑧-axis and towards 

the 𝑥𝑦-plane. Some streamlines are close to the 𝑧-axis, and some of them are far away from 

the 𝑧-axis in the beginning and then close to the 𝑧-axis when they move close to the 𝑥𝑦-plane 



but never interact with the plane. Therefore, finer cells are required around the 𝑧-axis and 𝑥𝑦-

plane to compute a more accurate computational velocity field. The accuracy of 

computational velocity fields means the streamlines drawn using the computational velocity 

fields are accurate. 

 
Figure 11.  Three exact streamlines. 

 

 

 
Figure 12.  Refined mesh for 𝑻 = 𝟕 with streamlines (left) and the projection on 𝒚𝒛 

plane (right). 

 

The left figure in Fig. 12 shows the refined mesh for 𝑇 = 7. Even though the refined mesh is 

similar to that of Saddle-spiral flow in Example 2, the two velocity fields are different. The 

right figure in Fig. 12 clearly shows that the 𝑧-axis and 𝑥𝑦-plane are identified in the refined 

mesh. The singular point of this velocity is the origin, and it is identified in the refined mesh. 

Discussion 

The AMR method is implemented for three-dimensional unstructured meshes with hexahedra 

elements and extended to multi-level refinement. The results from the four examples are 

presented, which confirm the accuracy and efficiency of the 3D AMR method. Furthermore, 

we have assessed the performance of the adaptive mesh refinement method in identifying the 

accurate location of singular points, axes, asymptotic planes, and other features.  
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