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Abstract 
The paper presents the formulation and recent development of the cell-based smoothed 
discrete shear gap plate element (CS-FEM-DSG3) using three-node triangles. In the CS-
FEM-DSG3, each triangular element will be divided into three sub-triangles, and in each 
sub-triangle, the original plate element DSG3 is used to compute the strains and to avoid 
the transverse shear locking. Then the cell-based strain smoothing technique (CS-FEM) 
is used to smooth the strains on these three sub-triangles. Due to its superior and simple 
properties, the CS-FEM-DSG3 has been now developed for some different analyses such 
as: flat shells, stiffened plates, FGM plates, and piezoelectricity composite plates, etc.   

Keywords: Reissner-Mindlin plate, smoothed finite element methods (S-FEM), cell-
based smoothed finite element method (CS-FEM), cell-based smoothed discrete shear 
gap method (CS-FEM-DSG3), strain smoothing technique. 

Introduction 

In the past 50 years, many of plate bending elements based on the Mindlin–Reissner 
theory and the first-order shear deformation theory (FSDT) have been proposed. Such a 
large amount of elements can be found in literatures [Reddy (2006)]. In formulations of a 
Mindlin–Reissner plate element using the FSDT, the deflection w and rotations xβ , yβ  
are independent functions and required at least to be C0-continuous. In practical 
applications, lower-order displacement-based Reissner-Mindlin plate elements are 
preferred due to their simplicity and efficiency. These elements usually possess high 
accuracy and fast convergence speed for displacement solutions [Ayad et al. (2002)]. In 
addition, the main difficulty encountered of these elements is the phenomenon of shear 
locking which induces over-stiffness as the plate becomes progressively thinner. 

In order to avoid shear locking, many new numerical techniques and effective 
modifications have been proposed and tested. Recently, the Discrete-Shear-Gap (DSG) 
method [Bletzinger et al. (2000)] which avoids shear locking was proposed. The DSG 
method works for elements of different orders and shapes and has several superior 
properties [Bletzinger et al. (2000)]. However, the element stiffness matrix in the DSG 
still depends on the sequence of node numbers, and hence the solution of DSG is 
influenced when the sequence of node numbers changes, especially for the coarse and 
distorted meshes.  

In the front of the development of numerical methods, Liu et al. have recently 
integrated the strain smoothing technique [Chen et al. 2001] into the point interpolation 
method (PIM) [Liu et al. (2003, 2004a, 2004b)] to create a series of smoothed PIM (S-
PIM) [Liu et al. (2006a, 2006b, 2013), Zhang et al. (2007)], as well as into the FEM to 
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create a series of smoothed FEM (S-FEM) [Liu et al. (2010a)] such as  the cell/element-
based smoothed FEM (CS-FEM) [Liu et al. (2007a, 2007b), Dai et al. (2007a, 2007b)], 
the node-based smoothed FEM (NS-FEM) [Liu et al. (2009a)], the edge-based smoothed 
FEM (ES-FEM) [Liu et al. (2009b)] and the face-based smoothed FEM (FS-FEM) 
[Nguyen-Thoi et al. (2009a)]. Each of these smoothed FEM has different properties and 
has been used to produce desired solutions for a wide class of benchmark and practical 
mechanics problems. Several theoretical aspects of the S-FEM models have been 
provided in Refs [Liu et al. (2007a, 2010b)]. The S-FEM models have also been further 
investigated and applied to various problems such as plates and shells [Nguyen-Xuan et 
al. (2009a,b), Nguyen-Thoi et al. (2013a)], piezoelectricity [Nguyen-Xuan et al. 
(2009c)], visco-elastoplasticity [Nguyen-Thoi et al. (2009b)], limit and shakedown 
analysis for solids [Nguyen-Xuan et al. (2012)], fracture mechanics [Liu et al. (2010c)], 
and some other applications [Nguyen-Thoi et al. (2013b,c)], etc.   

Among these S-FEM models, the CS-FEM [Liu et al. (2007a, 2007b), Dai et al. 
(2007a, 2007b)] shows some interesting properties in the solid mechanics problems. 
Extending the idea of the CS-FEM to plate structures, Nguyen-Thoi et al. (2012) have 
recently formulated a cell-based smoothed discrete shear gap method (CS-FEM-DSG3). 
In the CS-FEM-DSG3, each triangular element will be divided into three sub-triangles, 
and in each sub-triangle, the original plate element DSG3 [Bletzinger et al. (2000] is 
used to compute the strains and to avoid the transverse shear locking. Then the cell-based 
strain smoothing technique (CS-FEM) is used to smooth the strains on these three sub-
triangles. The numerical results showed that the CS-FEM-DSG3 is free of shear locking 
and achieves the high accuracy compared to the exact solutions and others existing 
elements.  

This paper hence aims to present a brief outline of the CS-FEM-DSG3 and its recent 
developments in some different analyses such as: flat shells [Nguyen-Thoi et al. 
(2013d)], stiffened plates [Nguyen-Thoi et al. (2013e)], FGM plates [Phung-Van et al. 
(2013a)] and piezoelectricity plates [Phung-Van et al. (2013b)], etc. 

Weakform for the Reissner-Mindlin plate  

Consider a plate under bending deformation. The middle surface of plate is chosen as the 
reference plane that occupies a domain 2RΩ ⊂  as shown in Figure 1.  
Let w be the transverse displacement (deflection), and T

x yβ β =  β  be the vector of 

rotations, in which xβ , yβ  are the rotations of the middle plane around y-axis and x–axis, 
respectively, with the positive directions defined as shown in Figure 1.  
The unknown vector of three independent field variables at any point in the problem 
domain of the Reissner-Mindlin plates can be written as T

x yw β β =  u . The 
curvature of the deflected plate κ  and the shear strains γ  are defined, respectively, as 

d= L βκ   ;  w= ∇ +βγ  (1) 

where [ ]/ / Tx y∇ = ∂ ∂ ∂ ∂ , and dL  is a differential operator matrix.  
The standard Galerkin weakform of the static equilibrium equations for the Reissner-

Mindlin plate can now be written as:  
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d d dT b T s Tδ δ δ
Ω Ω Ω

Ω + Ω = Ω∫ ∫ ∫κ D κ γ D γ u b  (2) 

where b is the distributed load applied on the plate. The matrices bD  and sD  are the 
material matrices related to the bending and shear deformation.  

 
Figure 1. Mindlin plate and positive directions of deflection w and rotations xβ , yβ  

Formulation of  the CS-FEM- DSG3  

A brief outline on the formulation of DSG3  

Using a mesh of eN  triangular elements such that 
1

eN

e
e=

Ω = Ω


 and i jΩ ∩ Ω = ∅ , i j≠ , 

the approximation 
Th

x yw β β =  u  for a three-node triangular element eΩ  shown in 
Figure 2 for the Reissner-Mindlin plate can be written, at the element level, as 
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where [   ]T
eI I xI yIw β β=d are the nodal degrees of freedom of h

eu  associated to node I and 
( )IN x  is linear shape functions in a natural coordinate defined by 

1 2 31 , ,N N Nξ η ξ η= − − = =  (4) 

 
Figure 2. Three-node triangular element and local coordinates in the DSG3. 

 



APCOM & ISCM  
11-14th December, 2013, Singapore 

 
 
The bending and shear strains can be then expressed in the matrix forms as: 

e= Bdκ ,         e= Sdγ            (5) 

where [ ]1 2 3
T

e e e e=d d d d  is the nodal displacement vector of element, B  and S 
contain the derivatives of the shape functions that are constants such as 

21 3

1 2 3

0 0 0 0 0 0
1 10 0 0 0 0 0

2 2
0 0 0e e

b c c b
d a d a

A A
d a b c d c a b
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 − − − − 
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(6) 
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(7) 

with a, b, c, d are geometric distances as shown in Figure 2 and eA  is the area of the 
element eΩ .  

Substituting Eqs. (3) and (5) into Eq.(2), the global stiffness matrix now becomes 

1

eN

e
e=

= ∑K K  (8) 

where eK  is the element stiffness matrix and is computed by 

d d
e e

T b T s T b T s
e e eA A

Ω Ω
= Ω + Ω = +∫ ∫K B D B S D S B D B S D S  (9) 

Basing on the formulation, it is seen that the element stiffness matrix in the DSG3 
depends on the sequence of node numbers of elements, and hence the solution of DSG3 
is influenced when the sequence of node numbers of elements changes, especially for the 
coarse and distorted meshes. The CS-FEM-DSG3 is hence proposed to overcome this 
drawback and also to improve the accuracy as well as the stability of the DSG3. 

Formulation of CS-FEM-DSG3  
In the CS-FEM-DSG3 [Nguyen-Thoi et al. (2012)], the domain discretization is the same 
as that of the DSG3 [Bletzinger et al. (2000)] using Nn nodes and Ne triangular elements. 
However in the formulation of the CS-FEM-DSG3, each triangular element  is divided 
into three sub-triangles by connecting the central point O of the element to three field 
nodes as shown in Figure 3. Using the DSG3 [Bletzinger et al. (2000)] formulation for 
each sub-triangle, the bending and shear strains in 3 sub-triangles are then obtained, 
respectively, by 

, 1, 2,3j j
e e j∆ ∆ == B dκ

 
(10) 

, 1, 2,3j j
e e j∆ ∆ == S dγ

 
(11) 

where ed  is the vector containing the nodal degrees of freedom of the element; j∆B , j∆S
, j = 1,2,3, are bending and shearing gradient matrices by the DSG3 [Bletzinger et al. 
(2000)] of jth sub-triangle, respectively. 
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Figure 3. Three sub-triangles ( 1∆ , 2∆  and 3∆ ) created from the triangle 1-2-3 

in the CS-FEM-DSG3 by connecting the central point O with three field nodes 1, 2 
and 3. 

 
Now, applying the cell-based strain smoothing operation in the CS-FEM [Liu et al. 

(2010a)], the bending and shear strains j
e
∆κ , j

e
∆γ , 1, 2, 3j =  are, respectively, used to 

create element smoothed strains eκ  and e
γ  on the triangular element eΩ , such as: 

;e e e e= =d γ Sd

 κ Β  (12) 

where Β  and S  are the smoothed strain gradient matrices, respectively, given by 
3 3

1 1

1 1;j j

j j
j je e

A A
A A

∆ ∆
∆ ∆

= =

= =∑ ∑S S
Β Β  (13) 

Therefore the global stiffness matrix of the CS-FEM-DSG3 is computed by 
d dT b T s T b T s

e eA A
Ω Ω

= Ω + Ω = +∫ ∫K B D B S D S B D B S D S         (14) 

Advantages of CS-FEM-DSG3  
Through the formulation of CS-FEM-DSG3 [Nguyen-Thoi et al. (2012)], it is seen that 
the method is simple and only based on three-node triangular elements without adding 
any additional DOFs. The CS-FEM-DSG3 is free of shear locking and pass the patch 
test. The method can be seen as an effective tool for analyses of Mindlin plates. Through 
the numerical examples of CS-FEM-DSG3 [Nguyen-Thoi et al. (2012)], the method 
shows four superior properties such as: (1) be a strong competitor to many existing three-
node triangular plate elements in the static analysis; (2) can give high accurate solutions 
for problems with skew geometries in the static analysis; (3) can give high accurate 
solutions in free vibration analysis; (4) can provide accurately the values of high 
frequencies of plates by using only coarse meshes.  

Extension of the CS-FEM-DSG3 to some others applications 
Due to its superior and simple properties, the CS-FEM-DSG3 has been extended quickly 
to some different analyses.  

First, by adding three degrees of freedom of the membrane and rotation 
displacements, together using the coordinate transformation matrix, the CS-FEM-DSG3 
is easy to extend to the flat shell element [Nguyen-Thoi et al. (2013d)]. This extention 
hence highlights the advantage of the method which uses only tringular elements, 
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because the geometry of shell structures is often much more complicated than that of the 
plate structures.  

Next, by combining with a membrane element and stiffened by a thick beam element 
Timoshenko, the CS-FEM-DSG3 is extended to the stiffened plates [Nguyen-Thoi et al. 
(2013e)]. In this element, the eccentricity between the plate and the beam is included in 
the formulation of the beam. The compatibility of deflection and rotations of stiffeners 
and plate is assumed at the contact positions.  

Next by using 7 degrees of freedom, the CS-FEM-DSG3 is extended to the C0-type 
high-order shear deformation plate theory for the static and free vibration analyses of 
functionally graded plates (FGPs) [Phung-Van et al. (2013a)]. In the FGPs, the material 
properties are assumed to vary through the thickness by a simple power rule of the 
volume fractions of the constituents. In the static analysis, both thermal and mechanical 
loads are considered and a two-step procedure is performed including a step of analyzing 
the temperature field along the thickness of the plate and a step of analyzing the behavior 
of the plate subjected to both thermal and mechanical loads.  

And recently, by combining the degrees of membrane displacement and electric 
potential, the CS-FEM-DSG3 is further extended for the static, free vibration analyses 
and dynamic control of composite plates integrated with piezoelectric sensors and 
actuators [Phung-Van et al. (2013b)]. In the piezoelectric composite plates, the electric 
potential is assumed to be a linear function through the thickness of each piezoelectric 
sublayer. A displacement and velocity feedback control algorithm is used for the active 
control of the static deflection and the dynamic response of plates through the closed 
loop control with bonded or embedded distributed piezoelectric sensors and actuators.  

Conclusions 

The paper presents a brief outline and recent developments of the CS-FEM-DSG3 using 
three-node triangles. In the original plate element, each triangular element will be divided 
into three sub-triangles, and in each sub-triangle, the original plate element DSG3 is used 
to compute the strains and to avoid the transverse shear locking. Then the cell-based 
strain smoothing technique (CS-FEM) is used to smooth the strains on these three sub-
triangles. Through the formulation and numerical examples, it is seen that the CS-FEM-
DSG3 is an effective tool for analyses of Mindlin plates. And due to its superior and 
simple properties, the CS-FEM-DSG3 has been extended quickly to some different 
analyses such as flat shells, stiffened plates, FGM plates, and piezoelectricity composite 
plates, etc.   
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