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Abstract 

Micro Air Vehicles (MAVs) are small flying vehicles that are designed to fit certain size and weight 
constraints. MAVs are important because they have a variety of practical applications, including 
surveillance and weather imaging. MAVs fall into two major categories according to their lift 
mechanism, either fixed-wing or flapping-wing, and wing structure, either rigid or flexible. Much 
research has been devoted to fixed wing, flexible MAVs consisting of rigid stabilizing battens and a 
rigid central fuselage coupled with a flexible membrane. We used finite element software to implement 
a system of PDEs that represented the MAV wing. The goal of this study was to computationally verify 
qualitative results showing that varying the number of stabilizing battens and the angle of attack 
affected the wing deformation. The work will be extended to include rigorous stability estimates, which 
will provide a better understanding of flexible wing MAV aerodynamics, and nonlinear membrane 
models. 
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Introduction 

Applications in computational mechanics have expanded with the need to solve sophisticated fluid-
structure applications using novel computational methodologies. Solving these coupled systems 
efficiently helps to understand complex non-linear interactions that arise in several applications such as 
blood flow interaction with arterial wall (Bathe and Kamm, 1999; Nobile, 2001) and computational 
aeroelasticity of flexible wing flying vehicles (Ferguson, 2006), where the structural deformation and 
flow field interact in a highly complex way. This study focuses specifically on the applications of 
computational mechanics to flexible-wing MAVs. 
 
Micro Air Vehicles (MAVs) are small, autonomous flying vehicles which are designed for use in 
applications where human intervention would be either costly or dangerous. MAVs have the potential 
to be used in a large number of applications, including military reconnaissance and weather imaging. A 
number of variations on MAVs have been considered in computational and experimental studies. One 
type of MAV is the flexible-wing MAV, in which a flexible membrane is attached to a rigid body, 
allowing the wing to passively deform during the course of a flight. The other major type of MAV is 
the biologically-inspired flapping-wing MAV. A number of studies have been conducted which 
examine the thrust performance of flapping-wing mechanisms (La Mantia and Dabnichki, 2013). 
Unfortunately, constructing flapping-wing MAVs that satisfy power and stability requirements is often 
very difficult (Ifju et. al, 2002). Therefore, in this study, we computationally modeled the behavior of a 
particular variant of the flexible-wing MAV designed and tested by Ifju, et al. 



   
 

2 
 

 

 
 

Figure 1. Flexible Wing MAV Model: (Left) 7-batten flexible wing MAV developed by the 
University of Florida (Ifju et. al, 2002); (Right) Schematic of one-batten (a), two-batten (b), and 

six-batten (c) flexible wing MAV designs (Ifju et. al, 2002) 

The Micro Air Vehicles developed by Ifju, et al. consist of a rigid skeleton consisting of a central 
fuselage and stabilizing battens which run perpendicular to the fuselage. Superimposed upon this rigid 
skeleton is a flexible membrane, typically constructed out of an extensible latex rubber membrane or an 
inextensible monofilm membrane. A number of different wings were theorized and tested by Ifju, of 
which the designs of note are displayed in Figure 1. In addition, Ifju et al. have conducted experimental 
studies that indicate the influence of the number of battens on the lift performance in relation to varying 
angles of attack (see Figure 2). 

 
 

 
Figure 2. Lift Coefficient vs. Angle of Attack for various MAV configurations (Ifju, et al) 

 
The major difference between the different designs is the number of stabilizing battens used, in 
addition to the type of membrane. One of the qualitative conclusions of the aforementioned study was 
that increasing the number of battens generally resulted in stiffer designs that exhibited smaller 
magnitudes of membrane vibration and deformation. The goal of this study was to computationally 
verify these qualitative experimental results and examine the role of the angle of attack on the 
membrane deflection. 
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Models, Methods, and Governing Differential Equations 

Model Problem 

In order to mathematically model the wing of the flexible-wing MAV, we first formulated a simplified 
geometry from which we subsequently imposed a system of partial differential equations. The 
geometry consisted of a 2D elliptical surface describing the underlying membrane, with 2D rectangles 
superimposed upon the ellipse which represented both the stabilizing battens and the central fuselage. 
The wing surface was superimposed on the face of a 3D cylinder, which represented a wind tunnel 
through which air could flow. The cylinder could be inclined to simulate different angles of attack, 
which describe at what angle the airflow makes contact with the MAV surface. A schematic showing 
the geometry and the different domains and boundaries of interest is shown in Figure 3. 

  
 

Figure 3. Subdomains of the wing structure for 1-batten MAV (top), schematic of airflow and 1-
batten MAV wing placement (Nong et al., 2010) (bottom) 

In Figure 3, Note that Ω1
 represents the flexible membrane, Ω2

 represents the battens, and Ω2
* 

represents the fuselage (which differs from the battens only in elastic modulus). In addition, Ω3
 

represents the entire 3D fluid domain, Γf
I represents the inflow face of the cylinder, Γf

N represents the 
rectangular outer face of the cylinder, and Γf

O represents the outflow face of the cylinder, not including 
the region where the MAV is placed. 
 
Governing PDE System 
 
We modeled the deformation of the flexible membrane using a linear elastic membrane model based on 
Hooke’s Law. This led to a PDE for the membrane which involved w, the transverse displacement of 
the membrane in space and time, shown below: 
 
 

𝜌𝑠0
𝜕2𝑤
𝜕𝑡2

− 𝐸0𝛻2𝑤 =  𝑝 (in Ω1) (1)  

 
Note in equation 1 that the right hand side represents the fluid pressure, to be defined later. To model 
the stabilizing beams, we used Euler-Bernoulli beam theory, which gives another PDE involving w. 
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Adding the Euler-Bernoulli beam equation to the prior membrane equation yields the following set of 
PDEs (Nong et al., 2010): 
 
 

(𝜌𝑠0 + 𝜌𝑠1)
𝜕2𝑤
𝜕𝑡2

− 𝐸0𝛻2𝑤 + 𝐸1
𝜕2𝑣
𝜕𝑦2

=  𝑝 (in Ω2) 

𝑣 =  
𝜕2𝑤
𝜕𝑦2

+ 𝜖𝛻2𝑣 (in Ω1 ∪ Ω2)  
(2)  

 
Note the presence of an additional dependent variable v, which is an auxiliary variable used to facilitate 
the computational simulation of the system. The fuselage (Ω2

*) satisfies in identical system of PDEs, 
only differing in the values of certain constants as previously mentioned. 
 
We assumed that the fluid flow was incompressible, irrotational, and inviscid, allowing us to use the 
potential flow model for our airflow. This involved the introduction the velocity potential ϕ, satisfying 
Laplace’s equation: 
 
 𝛻2𝜙 = 0 (in Ω3) (3)  
 
The fluid pressure is defined according to Bernoulli’s Equation for flow, which relates the fluid 
velocity, density, pressure, and transverse displacement as follows: 
 
 𝑝 =  −𝜌𝑓𝜙𝑡 − 𝜌𝑓𝑔𝑤 (4)  
 
PDE Boundary Conditions 
 
We imposed certain boundary conditions on the MAV wing model and the wind tunnel cylinder to 
simulate realistic constraints. The bottom half of the MAV wing employed a Dirichlet boundary 
constraint to simulate a fixed, rigid beam, while the upper half of the MAV wing employed a Neumann 
boundary constraint to represent the free membrane, as follows: 
 
 𝑤 = 0 (on lower boundary) 

𝑛�⃗ ⋅ ∇𝑤 = 0 (on upper boundary) (5)  

 
The inflow boundary condition for the fluid domain was specified by stating a constant value for the 
normal component of the fluid velocity on the inflow face. The normal fluid velocity on the outer, 
rectangular boundary of the cylinder was set to 0. The outflow boundary condition was specified using 
Sommerfeld’s radiation condition (Schot, 1992), which relates the normal fluid velocity on the right 
face of the cylinder to the time partial derivative of the velocity potential. The boundary conditions for 
the cylinder are described in Equation 6: 
 
 ∇ϕ ⋅ 𝑛�⃗ = 0 (on ΓfN) 

∇ϕ ⋅ 𝑛�⃗ = −𝑐  (on ΓfI) 

∇ϕ ⋅ 𝑛�⃗ = −𝛼
𝜕ϕ
𝜕𝑡

  (on Γf
O) 

(6)  
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Parameter Values 

Table 1 contains the parameter values used in our model (all non-cited values are either fundamental 
constants or are defined by the authors): 

Table 1. Parameter Values 

Variable Value 

Density of Membrane (ρs0) 10 kg ⋅ m−3 
Density of Beams (ρs1) 100 kg ⋅ m−3 

Density of Air (ρf) 1.293 kg ⋅ m−3 (Nave, 1999) 
Young’s Modulus Factor for Membrane (E0) 1 N ⋅ m−1 

Young’s Modulus Factor for Beams (E1) 10 N ⋅ m 
Young’s Modulus Factor for Fuselage (E3) 1000 N ⋅ m 

Smoothing Factor (𝜖) 10−5 m 
Acceleration of gravity (𝑔) 9.8 m ⋅ s−2 

Inflow velocity (𝑐)  0.1 m ⋅ s−1 
Sommerfeld Radiation Constant (𝛼) 50 s ⋅ m−1 

Computational Results 

Solution Methodology 

We then implemented computationally the PDE system described in Equations 1-4 and the boundary 
conditions described in Equations 5-6 using the finite element method. Specifically, we discretized 
Equations 1-4 and developed the weak formulation of the governing differential equations for the flow 
and the structure. These were coupled through interface variables that matched the velocity of the flow 
to the time derivative of the transverse displacement of the membrane-beam model.  

This algorithm was implemented using the multiphysics software COMSOL. The software utilized a 
backward Euler scheme in time and used the UMFPACK (Unsymmetric Multifrontal Sparse LU 
Factorization Package) for solving the resulting linear systems. The geometry was discretized using 
triangular and tetrahedral elements. 

Results 

We conducted numerical simulations with the three batten configurations shown in Figure 1, consisting 
of one-batten, two-batten, and six-batten wing skeletons. Additionally, we investigated three different 
angles of attack for the fluid, namely 90o, 80o, and 15o. We investigated the nine possible fluid-
structure combinations and we have reproduced the results in the table below, showing the deflection 
of the MAV membrane at t = 1 for varying numbers of battens and angles of attack as well as the 
maximum deflection of the MAV wing: 
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Table 2. Numerical Results 

  90 degrees 80 degrees 15 degrees 

1-
batten 

   

2-
batten 

   

6-
batten 

   
 
 
 
 
 

Upon inspection of Table 2, there are two general trends of note. The first is that proceeding from top 
to bottom in each column of the matrix, which corresponds to increasing the number of battens while 
fixing the angle of attack, results in a general decrease in the maximum deflection of the MAV wing, 
with some irregularities. This seems to confirm the qualitative observations of Ifju et al., which stated 
that increasing the number of battens would increase the rigidity of the wing.  
  
The second trend is that when proceeding from left to right in each row of the matrix, which 
corresponds to decreasing the angle of attack while fixing the number of battens, the maximum 
deflection also tends to decrease. Again, there are some irregularities, but overall this seems to confirm 
the expectation that lowering the angle of attack would decrease the maximum displacement. This 
presumably occurs because with smaller angles of attack, the normal component of the velocity is 
reduced, thus reducing the magnitude of the fluid pressure and therefore the magnitude of the 
deformation. 
 

Maximum deflection: 0.0213 Maximum deflection: 0.0217 Maximum deflection: 0.0161 

Maximum deflection: 0.0218 Maximum deflection: 0.0138 Maximum deflection: 0.0164 

Maximum deflection: 0.0165 Maximum deflection: 0.0161 Maximum deflection: 0.0096 
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In order to gain another perspective on the deformation profile of the flexible wing MAVs, we have 
created the following set of graphs, shown in Figure 4: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. The effect of varying the number of battens on the deformation of the MAV wing for 
angle of attack 90° (a), 80° (b), 15° (c) 

The graphs in Figure 4 show the one-batten configurations in blue, the two-batten configurations in 
green, and the six-batten configurations in red. The graphs confirm that increasing the number of 
battens reduces the overall deformation, but they also reveal an interesting result: changing the number 
of battens from one to two actually increases the overall deformation slightly for the 90o and 80o angle-
of-attack scenarios. The graphs also confirm the aforementioned observations about the angle of attack. 

Conclusion and Future Directions 

In this paper, we have implemented the mathematical model initially investigated by Nong, et al, 
consisting of a PDE system that is meant to model the deformation of a flexible-wing MAV with 
multiple battens. We have been able to generally verify the qualitative observations made by Ifju, et al 
about the effect of altering the number of battens on wing deformation, with some exceptions. 

(a) (b) 

(c) 
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Additionally, we have shown that decreasing the angle of attack of the MAV wing decreases the 
observed maximum deformation. 
 
There are a number of potential future directions for this research. The first is to computationally 
validate the quantitative experimental results derived by Ifju, et al dealing with the coefficient of lift, 
which were shown in Figure 2. The tests to computationally verify Figure 2 will be done through a 
joint use of the COMSOL multiphysics software and a separate fluid dynamics package. Other 
modifications involve changing the material properties of the MAV wing to produce material non-
linearity, which include considering non-linear elastic membrane models. Geometric non-linearity in 
the membrane and beam models will potentially be incorporated. Finally, a rigorous stability analysis 
for the coupled Fluid-Structure Interaction problem will be performed. This will involve a more 
complex model for the membrane which accounts for both axial (in-plane) and transverse 
displacements and will be based on establishing bounds for the mechanical energy of the MAV wing. 
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