
APCOM & ISCM  
11-14th December, 2013, Singapore 

 

1 
 

Contact analysis for an anisotropic half-domain  

with micropatterns considering friction 

*Hideo Koguchi!, Shuma Suzuki2, and Masahiro Taroura3 
1Department of Mechanical Engineering, Nagaoka University of Technology, Japan. 

2Graduate School of Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, Japan. 
3Taiheikogyo Co. Ltd. Tokai, Aichi 476-0003, Japan 

*Corresponding author: koguchi@mech.nagaokaut.ac.jp 

Abstract 

In the present study, a contact problem between a spherical indenter and a half-anisotropic elastic 
region with a micropattern is solved under normal and tangential forces considering friction. 
Surface Green's function, the discrete convolution and the fast Fourier transform (DC-FFT) method 
are used to calculate displacements on a contact area, and the conjugate gradient (CG) method is 
employed for calculating a contact pressure, the contact area, shear tractions, and a stick-slip region, 
respectively. The influences of the shape and density (the ratio of the pattern area per a unit area) of 
the micropattern and of material anisotropy in the substrate on the friction property for the substrate 
are investigated. In this study, the substrate with circle- and square-micropatterns are used for the 
analysis. As the result, it is found that the shear traction concentrates at the edges and corners of 
circle- and square-patterns, respectively. The apparent friction coefficient varies with the direction 
of the anisotropic principal axis. 

Keywords: Contact problem, Anisotropic material, Friction, Micropattern.  

Introduction 
By machining a micropattern on the surface of material, the friction property on the surface is 
desired to control as we design. Then, the functional enhancement in various manufacturing 
processes can be promoted. For example, there are needs to control an inflow and a transformation 
to the die of the work piece partially by machining a micropattern for a surface of the press die and 
blank holder. However, we do not yet understand enough the effect of pattern shapes on friction 
properties or the advantage that give a micropattern. Therefore, the present study investigates the 
friction property through a contact analysis between a spherical indenter and a half-anisotropic 
elastic region with the micropattern. In particular, the normal and tangential forces are applied to 
the surface of the anisotropic and isotropic elastic body, and investigated the relationship between 
the frictional force and the micropattern. Vlassak et al. (2003) analyzed a contact problem, which 
the indenter in an arbitrary shape is penetrated in the normal direction for the surface of the 
anisotropic material. In addition, Lin et al. (2008) analyzed a contact problem of a three-
dimensional rough surface, and He et al. (2004) performed a three-dimensional contact analysis of 
the rough surface with an arbitrary geometry. Cattaneo (1938) and Mindlin (1949) first established 
mathematical models for analyzing a partial slip problem in an elastic contact. They assumed that 
the magnitude of shear traction in a contact area could not exceed a static friction limit. Recently, 
Ciavarella (1998) extended Cattaneo-Mindlin's partial slip model to plane contact problems. 
However, the contact of dissimilar materials does not obey the classic theory of the Cattaneo-
Mindlin model, in which the effects of shear tractions on the normal displacement were not 
considered. It is difficult to derive an analytical solution for the contact problems with coupled 
normal and tangential loads. Therefore, Kalker (1977) proposed the method for analysis using the 
variational principle, instead of solving a contact problem analytically. Moreover, Chen and Wang 
(2008) proposed a method for analysis in the case considering a partial slip on a three-dimensional 
contact problem. Dini et al. (2010) conducted a contact analysis to the surface with many 
hemispherical projections. 
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In the present paper, a partial slip contact problem on half-anisotropic elastic bodies with a 
micropattern is analyzed. The conjugate gradient (CG) method, the discrete convolution and the fast 
Fourier transform (DC-FFT) are used for the contact analysis. Distributions of contact area and 
contact pressure are calculated using the CG method. The surface displacement for a contact 
pressure is calculated using the DC-FFT method. Furthermore, the influence coefficient is obtained 
using a surface Green function in a three-dimensional anisotropic elastic body. As a result, a ratio of 
the apparent stick-slip area and the friction coefficient of the surface with a micropattern are 
obtained for various directions of horizontal external force. In addition, the apparent friction 
coefficient for the surface with patterns is analyzed. 

Theory and Descriptions 
A model for contact problem between a rigid spherical ball and a surface with a micropattern is 
shown in Fig. 1. The x- and y-axes are set on the surface, while the z-axis directs inwards the 
substrate. The ball indenter is pressed onto the substrate by a normal load, P0, in the z-direction. 
Tangential loads, Fx and Fy, are applied to the ball in parallel directions to the x- and y- axes. The 
contact interaction results in a balance between normal pressure p, shear tractions qx and qy at the 
interface. The contact analysis of the semi-infinite isotropic elastic body considering friction was 
conducted by Mindlin (1949), and the validity of the result was checked in experiment, too. More 
general contact model is summarized as follows,  
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where ux, uy, and uz are the surface displacement under external forces in the direction of three 
axes, !x, !y, and !z are the rigid body displacements, respectively, sx and sy the relative slip distance 
parallel to the x- and y-axes, h0 is the initial surface gap, and g the surface gap between the indenter 
and the substrate after loading. The meanings of variables are shown in Fig. 2. Furthermore, the 
rigid body displacements !x, !y, and !z for isotropic materials are derived from the equations below,  
                              ! x = !0 1! 1! Fx µ f P0( )2 3{ } , ! y = !0 1! 1! Fy µ f P0( )2 3{ } ,                              (2) 

                                                        ! z = 9P0
2 1!! 2( ) 16RE 2 ,               (3) 

 
where  
                                                   !0 = 3µ f P0 2 !"( ) 1+!( ) 8aE ,               (4) 
 
a is a radius of the contact area, 
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           Figure 1. Model of contact analysis            Figure 2. Description of contact situation 



3 
 

 
                                                       a = 3RP0 1!!

2( ) 4E{ }1 3 ,                              (5) 
 
R is a radius of rigid ball, E is Young's modulus of elastic body, and " is a Poisson’s ratio of elastic 
body. 
 
In contact analysis, we determined the contact area, pressure and shear traction so as to satisfy the 
conditions of the following formula using Eq. (1). 
 
Let   
                                                     g x, y( ) = h0 x, y( )!! z + uz x, y( ) .                   (6) 
  
The contact pressure p is thought as follows,   

                                             

g x, y( ) = 0 : p x, y( ) ! 0 In contact( )
g x, y( ) > 0 : p x, y( ) = 0 In separation( )

"
#
$

%$ ,              
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p x, y( )dS

!" = P0 ,                (8) 
  
where #  is the contact area, and P0 is the normal load. 
The shear tractions in the stick and slip regions are assumed to obey the following conditions: 
 
In the stick region: qx

2 x, y( )+ qy2 x, y( ) ! µ f p  , and sx
2 x, y( )+ sy2 x, y( ) = 0               (9) 

In the slip region: qx
2 x, y( )+ qy2 x, y( ) = µ f p , and sx

2 x, y( )+ sy2 x, y( ) ! 0             (10)  
 
                                                         qi x, y( )dS

!" = Fi , i =x, y,             (11) 
 
where the shear tractions qi is the product of the friction coefficient µf and the contact pressure p. 
Furthermore, the elastic displacement in the contact region is calculated in order to perform contact 
analysis. If the force q = (qx, qy, p) is applied to a contact surface, the surface displacement u is 
calculated from the following equation,  
                                        u x, y( ) = K x ! xs, y ! ys( )q xs, ys( )dxs dys"##             (12) 
 
where (x, y) is an observation point, (xs, ys) is a source point of force, K is the displacement of the 
observation point when unit concentration load acts to a source point. Generally, K is expressed in a 
matrix form. The response function for displacement will be described later. Applying the two-
dimensional Fourier transform to Eq.(12) yields û = K̂ ! q̂ , where the two-dimensional Fourier 
transform is defined by  
                                           f̂ !1,!2( ) = f x, y( )ei !1x+!2y( ) dxdy
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$                 (13) 
 
Calculation is carried out iteratively so that the normal load P0 and tangential forces Fx and Fy 
which are given as a prior condition may satisfy Eqs. (8)-(12). Moreover, the distributions of 
contact pressure p and shear tractions qx and qy in a contact region are calculated. In order to solve 
the basic equation for a contact problem, the field containing a contact surface is divided by a grid. 
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Grid intervals of the x- and y- directions are set to $x and $y. When the coordinates of an arbitrary 
grid point on the field are (i$x, j$y), the coordinates of the point are represented as (i, j). The 
algorithm for resolving the shear tractions proposed by Wang et al. (2010) is used in this study. This 
method is used for the repetitive calculation considering the coupling effect of contact pressure and 
shear traction. Furthermore, the stick-slip region and shear traction of the contact region are 
determined simultaneously. 
 
In this study, the displacement in the contact area is calculated using the DC-FFT method. The 
displacement under the shear tractions qx (i, j) and qy (i, j) is obtained by the inverse Fourier 
transform of Eq. (13). Thus,  
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where IFFT denotes the inverse Fourier transform, and ^ expresses the Fourier transform of each 
function. Equating Eq. (14) to the x- and y- component of Eq.(1) yields  
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where pressure distribution p(i, j) is provided from the contact problem of only normal load. Then, 
shear tractions qx and qy can be determined from Eq.(15) by using the CG method coupling with 
constraint conditions (Eqs.(9) and (10)).  
 
Once the shear tractions qx and qy are obtained from the above procedure, the displacements uz for qx 
and qy, respectively, can be determined in terms of the influence coefficients by using the DC-FFT 
method. Then, the surface vertical gap g is updated by adding the displacements due to the shear 
tractions. Furthermore, the CG method is also employed to renew the contact pressure, and the new 
pressure is used for further update of the shear tractions. 
 
Now, we need to derive the influence function for a semi-infinite anisotropic region. We consider 
that a force f=(fx, fy, fz) is applied to the coordinate origin. The equilibrium equation for anisotropic 
materials can be expressed using the displacement, ui: 
 

       Cijkluk,lj = 0 .              (16) 
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Figure 3. The coordinate system for an influence function 
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The two-dimensional spatial (x1-x2) Fourier transform is applied to Eq.(16). Then, an ordinary 
differential equation of displacement is derived. The general solution of the differential equation is 
assumed to be û = ae!ip!x3 . Where p and a satisfy the following eigenrelation:  

    Q + p R +RT( )+ p2T{ }a = 0              (17) 
 
where Qik=Cijksnjns, Rik=Cijksnjms, and Tik=Cijksmjms with n=[n1, n2, 0]=[cos%, sin%, 0]T , m=[0,0,1]T. 
The angle % is used in the variables (&1, &2) = ('n1, 'n2) of the Fourier transform and taken from the 
&1 axis. Finally, the displacement obtained from the inverse Fourier transform is expressed as 
follows:  

  u(x1, x2, x3) =
i
4! 2

1
"
A e!ip*!x3 B!1

!"

"

#!"

"

# fe!i(!1x1+!2x2 )d!1d!2             (18) 
 
where A=[a1, a2, a3], B=[b1, b2, b3],〈 3* xipe !" 〉 = diag[ 31 xipe !" , 32 xipe !" , 33 xipe !" ], and  
b j = RT + pjT( )a j . 

Results and Discussions 

Result of isotropic material 
For a verification of the validity of the result of analysis, the same problem as Wang et al. (2010) is 
analyzed. The condition for analysis is shown in Table 1(a). The Boussinesq's solution for an 
isotropic elastic body is used for calculating the response coefficient of traction and pressure. 
Distributions of the contact pressure and shear tractions are shown in Figs. 4(a) ~ (c). In addition, 
the contact pressure and shear tractions are normalized by the maximum pressure of Hertz contact 
theory, pH = 860MPa, and coordinates are normalized by the contact radius of Hertz contact theory, 
a= 0.105 mm. In this analysis, the displacement in a normal direction to the surface induced by the 
tangential force that acts on the surface of a half-infinite domain is also taken into consideration. 
Therefore, the maximum contact pressure causes at the position where the maximum shear traction 
qx shown in Fig.4(b) occurs. The distributions of contact pressure and shear traction are agreed with 
the results of Wang et al. (2010). 

Results of anisotropic material 

Distributions of the contact pressure and shear tractions on the plane of Fe(111) are shown in Figs. 
5(a)~(c). Moreover, pressure and shear tractions were normalized by the maximum pressure of 
Hertz contact theory pH = 931.62MPa, and coordinates were normalized by the contact radius of   
Hertz contact theory a = 0.10124mm. As compared with the result of isotropic material, the 
maximum and minimum values of the contact pressure and shear tractions in the anisotropic 
material are similar to those in the isotropic Fe. However, the shapes of the distribution are different, 

                 
 (a)Normalized contact            (b) Normalized shear             (c) Normalized shear 
     pressure p/pH                             traction qx/pH                          traction qy/pH 

Figure 4. Contour plots of normalized contact pressure and shear tractions by 
pH=860.03MPa and a=0.10537mm 
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but the difference of absolute values of the shear tractions is small. Here, Young's moduli and 
Poisson’s ratio for anisotropic materials Fe(111), Cu(111) and Ni(111) are calculated using E(111) = 
4/(2s11 + 2s12 + s4) and "(111) = -(s11 + 5s12 - s44/2) (3s11 + 3s12 + 3s44/2), respectively, where s11, s12 
and s44 are elastic compliance of materials. 
 
At first, a contact analyze for the surface of Cu (isotropy, anisotropy) and Ni (isotropy, anisotropy) 
which have four kinds of micropatterns shown in Fig.6 under the condition (c) shown in Table 1 is 

Table 1. Condition for analysis 
(a) (b)

Fe(Isotropy) Fe(111) Cu(Isotropy) Ni(Isotropy) Cu (111) Ni (111)
210 GPa 220.41 GPa 128.73 GPa 220.64 GPa 128.53 GPa 227.34 GPa

0.3 0.391 0.345 0.302 0.503 0.423

Shape

Pitch - -

Height - -

0.3

(c)

Young's modulus E

Poisson’s ratio !

Coefficient of friction µf

Material

Number of grid points 256 ! 256

20.0 µm

Circle("400 µm)，Square(□340 µm)

1280 µm，640 µm

30.0 µm

Distance of grid points 

Pattern

Radius of indenter R 200 mm

Normal load P0 20 N 6.00 kN
Tangent force Fx (= 0.6µf P0) 3.43 N 1.08 kN

512 ! 512
0.5µm

Plane

18.0 mm

0.28571

 
 

Table 2. Material properties used in the analysis (GPa) 
C11 C12 C13 C15 C22 C23 C25 C33 C44 C46 C55 C66

Fe(111) 300.1 111.6 97.26 20.26 300.1 97.26 -20.26 314.4 79.93 -20.26 79.93 94.25

Cu(111) 218.6 103.7 86.51 24.32 218.6 86.51 -24.32 235.8 40.25 -24.32 40.25 57.44
Ni(111) 325.7 129.0 103.2 36.58 325.7 103.20 -36.58 351.6 72.47 -36.58 72.47 98.33  

 

                 
(a)Normalized contact            (b) Normalized shear             (c) Normalized shear 
     pressure p/pH                             traction qx/pH                          traction qy/pH 

Figure 5. Contour plots of normalized contact pressure and shear tractions by 
pH=931.62MPa and a=0.10124mm 
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Figure 6. Geometry and size of micropatterns 
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carried out, and the friction property for different micropatterns is investigated. Elastic constants for 
the anisotropic material are shown in Table 2. Figure 7 demonstrates the distributions of shear 
traction, qx, and the contact pressure p on the surface of Cu(111). In case of Circle A, the shear 
traction qx concentrates at the edge of each circle, and a positive shear traction occurs at the right 
side of the circle like Fig.4(b), since the external force which is applied to the rigid indenter directs 
in the positive direction of the x-axis. Large shear traction occurs near the center in the whole 
contact area. In case of Circle B, the shear traction qx is less than that in Circle A (Fig.7(b)), and the 
concentration of qx at the edge reduces moderately. This is attributed to the increase of pattern 
density. This is caused by the increase of contact area and the decrease of average contact pressure. 
There is no space to show the results for Squares A and B. Similar results are deduced for square 
patterns, furthermore, for Ni(111). 

Slip distance and stick region 
The maps of slip distance, sxy, for each surface pattern are shown in Fig.8. The stick region indicates 
the region of sxy=0. For Circle A, it is found that the slip distance increases in the direction of the 
applied force within the region of a lower contact pressure, and the stick region exits at the opposite 
side of the slip region. Comparing the stick region with the distribution of shear tractions, qx and qy, 
it is found that the shear tractions vary significantly within the stick region. Figure 8(b) shows the 
map of slip distance for Circle B. It is found that the width of stick region in Circle B is less than 
that in Circle A. Next, comparing Fig.8(c) with Figs.8(a), (b) and (d), it is found that the stick 
region for square patterns is similar to that for circular patterns, and the width of stick region 
decreases with the increase of pattern density. Although the maximum slip distance does not so 
much vary for all patterns. 

Apparent friction coefficient 
It is very hard to determine a friction property for each pattern due to the different tendency of the 
ratio of stick region against the pattern density. Then, a friction coefficient is investigated for the 
apparent contact area. An analytical solution for contact problem with anisotropic substrate 
considering friction cannot be available until now. So, the friction coefficient is estimated using the 
expression for isotropic materials in the study. When material is isotropic, the friction coefficient is 
obtained from  
          µa = ! xa

3KE P0 a
2 ! c2( ){ }              (19) 

 
(a) Contact pressure   (b) Shear traction      (c) Contact pressure      (d) Shear traction 
  p (GPa) : Circle A     qx (GPa) : Circle A     p (GPa) : Circle B          qx (GPa) : Circle B 

Figure 7. Contour maps of contact pressure and shear tractions : Cu(111) 
 

 
(a) Circle A               (b) Circle B                 (c) Square A                (d) Square B 

Figure 8. Contour maps of slip distance : Cu(111) 
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where KE=8E{3(1+")(2- ")}, " is Poisson’s ratio, E is Young’s modulus for the isotropic substrate. 
When the substrate is an isotropic flat surface, the friction coefficient calculated using Eq.(19) is 0.3. 
When material is anisotropic, KE is composed of anisotropic elastic moduli. We do not know the 
form until now. The value of KE is determined from the data of the flat anisotropic substrate for 
different directions of applied force. The obtained values of KE are shown in Fig.9(a). In the present 
analysis, the arrangement and direction of the patterns are fixed, and the direction of applied 
horizontal force is rotated 15º by 15º until 180º with respect to the z-axis. Then, the influence of 
pattern on the apparent friction coefficient, µa, is investigated. The results are shown in Fig.9(b). It 
is found that the apparent friction coefficient for the surfaces with patterns is larger than that for the 
isotropic substrate with the flat surface. It is found that the value of friction coefficient for the 
surface with high pattern density is less than that with low pattern density. This is due to the 
increase of contact pressure in low pattern density. The influence of pattern shape on the friction 
coefficient can be a little observed. 

Conclusion 
In the present study, a contact problem between a rigid spherical indenter and a half-anisotropic 
elastic region with the micropattern was analyzed under normal and tangential forces considering 
friction. Furthermore, the apparent friction property for the surface with a micropattern was 
investigated. From the results, the following conclusions can be drawn: 
(1) The difference of absolute values of the shear tractions between isotropic material and 
anisotropic material were not so much large. However, the shapes of the map for shear tractions 
were different. 
(2) For the surface with the micropattern, the contact pressure concentrated at the edge of each 
pattern, and the shear tractions also concentrated at the sites corresponding to the contact pressure. 
(3) The apparent friction coefficient for a high density of micropattern was less than that for a low 
density. 
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Figure 9. Variation of KE and apparent friction coefficient 


