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Abstract 

Bone cells are well-known to be regulated biochemically and biomechanically. The notion that the 
microscopic availability of bone surface affects bone remodelling is, however, less established. 
Bone-resorbing and bone-forming cells require a bone surface to attach to and initiate the matrix 
renewal. In this paper, we will extend a previous computational model of bone remodelling. This 
model includes several stages in the differentiation of bone cells, biochemical regulations and 
geometrical regulations. In particular a new calibration algorithm for uncommitted bone cells and 
activator/repressor functions is presented. This study is a necessary prerequisite to study 
endocortical bone loss due to aging in a spatio-temporal context.  
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Introduction 

Bone has several important roles: (i) keeping its integrity and sustaining the mechanical loading 

applied on it, (ii) a source/sink of calcium and phosphate regulating mineral homeostasis, and (iii) a 

protected space for haematopoiesis. Like in all other materials, loads that are applied on bone every 

day, lead to fatigue damage and micro cracks. Those cracks have to be repaired, otherwise they will 

grow and lead to macroscopic fracture. This is the role of the bone remodelling process, i.e., to 

resorb bone matrix containing cracks and to form new bone matrix thereafter. Three kinds of cells 

are responsible for the remodeling process: osteocytes (i.e., the mechanoreceptors, detect the cracks 

and activate remodelling); osteoclasts resorb the bone matrix and osteoblasts refill the hole. These 

cells are spatially and temporally organized in functional structures called BMUs - Basic 

Multicellular Units (Parfitt 1994). 

Few computational models have been developed representing bone cell behaviours and more 

generally the remodelling process (Lemaire, Tobin et al. 2004); (Pivonka, Zimak et al. 2008); 

(Pivonka, Zimak et al. 2010); (Scheiner, Pivonka et al. 2013) (Buenzli, Thomas et al. 2013; 

Pivonka, Buenzli et al. 2013). They included biochemical, biomechanical and simplified 

geometrical regulations. 

The aim of this paper is to develop a computational model of bone remodelling taking into account 

a comprehensive description of geometrical feedback. Emphasis is on the recalibration of 

uncommitted bone cells and the activator/repressor functions.  

Materials and Methods 

This paper is a continuation of our previous work on bone remodelling (Pivonka, Zimak et al. 2008; 

Pivonka, Buenzli et al. 2013) and, hence, only mathematical expressions relevant for explaining the 

underlying model behaviour are given below. For a complete list of equations and respective 

parameter values the reader is referred to previous publications and the CELLML model repository 

(see link in references). In the following we describe the essential features of the model. 
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Biochemical regulation 

We modelled the interactions between osteoblasts and osteoclasts at various stages of differentiation 

using receptor-ligand binding reactions together with Hill-type functions (Figure 1); three stages in 

the differentiation of these bone cells are taken into account: uncommitted osteoclast and 

osteoblasts: OCu and OBu; osteoclast and –blast precursor cells: OCp and OBp and active cells: OCa 

and OBa. The uncommitted cells represent bone marrow stromal cells (OBu) and hematopoietic 

stem cells (OCu) respectively from which all other cells derive. Active osteoblasts (OBa) produce 

bone matrix while active osteoclast (OCa) resorb the bone matrix.  

 
Figure 1 – Cell population model of bone remodeling including several developmental stages of osteoblasts and 

osteoclasts and their biochemical regulation, biomechanical regulation and geometrical regulation (Pivonka, 

Buenzli et al. 2013). 

Communication between osteoblasts and osteoclasts enables a coordinated response to 

physiological demands, i.e., calcium and phosphate and the mechanical environment. Cells from the 

osteoclast lineage maintain a pool of osteoclast precursors through macrophage colony stimulation 

factor (MCSF, assumed constant) and RANKL (see next paragraph). Osteoclast precursor cells are 

then available for recruitment and differentiation into active osteoclasts. 

 

Osteoblast lineage regulates the differentiation and the activity of osteoclasts. This pathway 

involves three major components: receptor activator of nuclear factor κβ: RANK, its ligand: 

RANKL and osteoprotegerin: OPG. RANK is expressed at the surface of uncommitted osteoclast 

and osteoclast precursor cells. RANKL is a polypeptide found at the surface of osteoblast precursor 

cells and can also be released as a soluble form (not modelled here). OPG is a decoy receptor 

molecule released by active osteoblastic cells. The differentiation of OCp into OCa requires binding 

of RANKL to RANK. The RANK - RANKL binding is inhibited by OPG which binds onto 

RANKL instead of RANK (Roodman 1999; Martin 2004). We sum up these interactions in the 

Figure 1.  

 

Geometrical regulation 

As pointed out in the introduction, there is increasing evidence that bone surface availability, i.e., 

bone specific surface, may play an important role in bone remodeling and particular in age-related 

bone loss. Bone cells are “working” on the surfaces of the bone matrix and consequently bone 

morphology plays an important role in the remodeling process. Osteoclasts require attachment to a 

surface to be able to resorb the bone matrix while osteoblasts only secrete osteoid on existing bone 

surfaces. 
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Two types of bone are usually distinguished, i.e., cortical and trabecular bone based on their 

respective porosity. Martin (Martin 1984) highlighted the differences between cortical and 

trabecular bones in terms of bone specific surface. In the cortical bone, an increase of porosity will 

increase the available surface, where remodeling can proceed, and so increase remodeling. 

However, in trabecular bone, increasing the porosity will decrease the available surface and 

decrease the remodeling (see Figure 2.a).  

  
Figure 2 – a) Possible effect of geometrical feedback on the evolution of vascular porosity in osteoporosis, both in 

cortical and trabecular bone according to Martin (Martin 1972). Dashed curves show the changes in fvas 

obtained without geometrical feedback. b) Relation between bone specific surface and vascular porosity 

investigated by Martin (Martin 1984) 

In order to introduce the effect of specific surface on bone cells we use a phenomenological 

function in the form of a polynomial similar as in (Pivonka, Buenzli et al. 2013):  
 

     
  

      
                      (1) 

 

where    is the specific surface;    is a constant determined based on a parametric study presented 

in the next section and “i” refers to the particular cell on which the regulatory function is applied. 

We note that unlike in the paper (Pivonka, Buenzli et al. 2013)       is set equal to 1 leading to a 

dimensionless quantity. We believe that the original formulation, while suitable for the extreme 

cases of trabecular and cortical bone may have problems in properly describing the transition from 

cortical to trabecular bone. Hence, this new more consistent formulation has been used. We note 

that this formulation requires recalibration of the steady state values of the model (see discussion 

below). 

The specific surface is based on B.R. Martin‟s equation (Martin 1984):  
 

                       
        

        
        

  (2) 
 

where a, b, c, d and e are constants and      is the vascular porosity in cortical bone and the marrow 

porosity in trabecular bone. 

 

This relation has been obtained from interpolating of experimental data from an investigation on 

slices of cortical and trabecular bones both in humans and in animals. We are currently 

investigating the relationship between cortical porosity and bone specific surface using high 

resolution micro-CT in more detail in order to verify the accuracy of Eqn.(2). For the purpose of 

this paper we will base our theoretical developments on the porosity versus specific surface 

relationship provided by Martin, i.e., Eqn.(2) shown in Figure 2.b. (Martin 1984). 

 

Unlike, in previous models, we believe that the OCu and OBu cell densities are not constant, but 

depend on the available pore space. Assuming that these densities should be related to the 

a b 



4 

 

respective pore space and to the observed remodeling rates we assume OCu = OCu(fbm) and OBu = 

OBu(fbm). Furthermore, we assume the shape of OCu vascular density to follow a sigmoidal 

function. Indeed the vascular density is the density inside the pores. Hence, we assume the OCu 

density to be higher where the porosity is low (i.e., fbm = 1). Indeed, vascular pores in cortical bone 

are filled with blood vessels and BMUs. However, close to the marrow cavity, the trabecular pores 

are bigger but contain many other components such as bone marrow and fat. Hence, the density of 

bone cells in the vascular space is higher in cortical bone than in trabecular bone. Using suitable 

constraint conditions we then determine OBu(fbm) at homeostasis (i.e., the equilibrium state). More 

details are found below.  

 

Bone cells equation  

The evolution of bone cells is described mathematically based on “rate equations” (Lemaire, Tobin 

et al. 2004). The state variables are OBp, OBa, OCp and OCa, i.e., the cell densities. The Pi functions 

are Hill functions which represent the interaction – activation or repression – between a component 

(for example TGFβ) and a cell. 
 

     

  
                   

    
                       

                      
    

     

    

  
              

    
                     

    

  
                   

             
                            

          

     

  
              

                       
    

     
(3) 

 

where, Di are the differentiation rates of the cell „i‟; Ai the apoptosis rates and Pi the proliferation 

rates (see (Pivonka, Zimak et al. 2008) for details).  

 

An important element in the remodeling process is the bone volume fraction:    . It is the 

proportion of bone matrix in a volume of bone. Bone can be described as a two-phase material: the 

solid part, the matrix and the vascular part, the pores. With      the proportion of pores we have: 
 

 
    

   

      
                               

(4 - 5) 

(Martin 1972), in his work well explained how the porosity change during the remodeling process. 

The change in porosity is the difference between the total resorption of the osteoclasts and the total 

formation of the osteoblasts. And so, the changes of the bone matrix volume fraction over time can 

be represented by:  
 

     
  

                    
(6) 

 

where       and      are the relative bone formation and resorption rates respectively. In a healthy 

(i.e., homeostatic) state, there is no change in the porosity/bone matrix volume fraction since the 

formation and the resorption are in equilibrium. In the following, this state will be referred to as the 

steady-state of the system.  

 

The numerical simulation results are divided into two parts. The first part deals with simulations of 

the steady-state of the system which allows calculation of suitable initial conditions of uncommitted 

cell numbers and respective constants in the activator/repressor functions. The second set of 

simulations deal with age-related bone loss which is obtained by perturbing the initial healthy state. 

Based on this perturbation we can follow the temporal changes of cell numbers, regulatory factors 

and bone volume fractions.    
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Results and discussion 

Changing the geometrical feedback 

In the paper ref (Pivonka, Buenzli et al. 2013), the geometric regulation has been defined as in 

equation 1 where       is the specific surface for the steady state. This type of normalization of gi 

leads to gi (t0) = 1. Hence, no recalibration of the original model was required for estimating steady-

states of the system. Whereas this formulation seems suitable for discrete states of cortical and 

trabecular bone it is not clear how a continuous transition as in a spatio-temporal setting can be 

achieved with this formulation.   

 

For these reasons, we renormalize by       = 1 mm
-1 

in the current paper. We note that also in the 

model of Martin and others a similar approach has been applied. Introducing this normalization in 

Equation (1) would lead to changes in the differentiation rates. Indeed,      varies between 0 and 4 

mm
-1

.  

In order to have the same differentiation rates as in previous models, we renormalize the various 

differentiation rates according to the following relationship: 
 

   
                   

              
 (8) 

 

  

Calibration of the uncommitted cell populations: porosity dependence 

Previously, OCu and OBu cell densities were considered constant and assumed to be large compared 

to the cell densities of the state-variables. Based on bone biology literature we take:      
                  and                   (Buenzli, Pivonka et al. 2013).  

 

Here, we assume OBu and OCu densities to be porosity dependent. We impose OCu(fbm), as a 

sigmoidal function of fbm in order to have approximately a 4 times change in the amplitude of OCu 

(1.5*10
-3

 ≤ OCu ≤ 5*10
-3

 pM). In the steady state, OBu density is unknown. Using the equilibrium 

constraint, i.e. resorption equals formation; we obtain 5 equations for the 5 unknowns. We are 

solving these equations using the Newton algorithm. By solving this problem at discrete porosities 

for the entire range (from 0 to 100%), we determine OBu(fbm) (see Figure 3a) at discrete points. 

These discrete values are then interpolated (using a linear interpolation) in order to obtain 

continuous functions of OBu(fbm) and OCu(fbm) which are then used for the subsequent dynamic 

simulations. 
 

 
Figure 3 – Dependence of uncommitted bone cells on bone matrix volume fractions fbm. (a) Uncommitted 

osteoblasts, (computed function) and (b) Uncommitted osteoclasts (imposed function) 

a b 
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The vascular density is the density inside the pores. This is why we assume this density to be higher 

where the porosity is low (i.e., fbm = 1). Indeed, vascular pores in cortical bone are filled of blood 

vessels and BMUs. However, close to the marrow cavity, the trabecular pores are bigger but 

contains many other components. And so the density of bone cells in the vascular space is higher in 

cortical bone then in trabecular bone. 

 

Calibration of the Hill functions  

Due to the novel model features some of the previously defined Hill functions require recalibration. 

One of the most important Hill function is:         
    

, i.e., the TGFβ activator function which 

promotes differentiation of bone marrow stromal cells (OBus) into osteoblast precursor cells. Note 

that TGFβ is released from the bone matrix during osteoclastic resorption and provides a 

biochemical feedback on both osteoclastic and osteoblastic cells. The activator function is 

expressed as: 
 

 
        

    
  

          

               
 

(9) 

 

where α is a proportionality constant expressing the TGFβ content stored in the bone volume and 

     is the dissociation constant. In the original model      has been calibrated such as to obtain a 

strong biochemical feedback response. In order to test the suitability of the choice of      in the 

current model we investigate the case of age-related bone loss. Similar as in previous models we 

induce age-related bone loss by increasing the PTH concentration. Osteoporosis is characterized by 

an increase in porosity. To simulate OP in our model, we perturb the homeostatic state by 

increasing the RANKL/OPG ratio. This can be achieved by prescribing an excess of PTH 

concentration. This increase in PTH leads to an increase in RANKL and a decrease in OPG leading 

to an overall increase in the RANKL/OPG ratio. This increase promotes osteoclastic resorption and, 

hence, an increase in the TGFβ concentration. To obtain an increase in porosity of about 2%/year as 

assumed by Buenzli (Buenzli, Thomas et al. 2013), a continuous injection of PTH has been applied: 

PPTH(t) = 15 pM/day for all times t > t0. 

 

In Figure 4 we show the response of the TGFβ activator function for the case of age-related bone 

loss for different values of the dissociation constant (    ). The red parts of these plots represent 

the temporal changes of         
    

 over the simulation time (t0 = 0, tend = 50 years) while the black 

parts on the curves represent a larger interval of active osteoclast concentrations. Interestingly, we 

can see that use of the original value of      (solid line) leads to an almost linear response of 

        
    

with negligible changes in values. On the other hand, using                   leads to a 

very strong non-linear response with values ranging between 0.40 and 0.77 for the investigated 

simulation time. Clearly the original      value doesn‟t lead to a sensitive model response due to 

the introduced porosity dependent OBu and OCu values. Based on this parametric study we chose 

the                    (dashed lines) which leads to an intermediate response with values 

changing from 0.16 – 0.41.  
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Figure 4 - Hill function for the regulation of TGF β depending on the active osteoclasts density. In red the 

portion of the curve where the osteoclasts density is in the model 

Parametric study for the geometrical feedback 

  

 
Figure 5 - Parametric study showing the evolution of the porosity depending on the time for several regulatory 

functions: a) gOBu b) gOCu c) gOBu = gOCu d) gOBu and gOCu differently regulated. 

a 
b 

c d 
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After having checked the suitability of the respective model parameters we are now in a position to 

study the effects of the different geometric regulatory functions gi(fbm), i.e., Eqn.(1) in more detail. 

In order to determine the effect of different choices of gi with different values of ki we apply a 

similar strategy as in (Pivonka, Buenzli et al. 2013). We tested: ki = 0; 0.1; 0.3 and 1 on both 

uncommitted osteoblasts and osteoclasts with different combinations.  

 

The objective of introducing a geometrical feedback in the model is to observe the acceleration of 

bone loss in trabecular bones and deceleration in cortical bones. This idea has been introduced by 

(Martin 1972)  and was further explored in (Pivonka, Buenzli et al. 2013). 

The graphs in Figure 5 show that the geometrical regulation needs to be preferentially on OCu. For 

the case kOCu = 0 (Figure 5a). no acceleration of cortical bone loss is observed. For all other 

combinations, the expected behavior is observed indicating that the suggested model is capable of 

representing geometrical feedback. In the following, we chose kOBu = kOCu = 0.3 as the combined 

regulation of both OBu and OCu, which leads to the anticipated geometrical behavior (Figure 5c). 

Indeed the other cases lead either to a too strong regulation (kOCu = 1) or a not sufficiently strong 

regulation (kOCu = 0.1). 

Conclusions 

Here we presented a consistent bone cell population model which takes into account bone specific 

surface on bone remodeling. Indeed, this model is able to simulate age-related bone loss for all 

different initial conditions of porosity. The results are in good qualitative and quantitative 

agreement with data reported in the literature.  

As a next model development we will introduce a mechanical feedback and apply this coupled 

model to assess spatio-temporal changes in a cortical bone cross section. Using this methodology 

will help to better understand the experimentally observed phenomenon of trabecularization.  
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