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Abstract 

A quantitative method is developed to determine the optimal stress field for 2D 8-node quadrilateral 
hybrid stress element (HQ8). It provides a straightforward way as to that how and why the resulting 
element can improve its displacement response. A new inner product with material weighting 
matrix is defined to reveal the relationship in quantity of exact similarity degrees between different 
stress modes. It is different from the conventional energy product which can only qualitatively 
determine the orthogonality of stress and strain modes because they are considered as mathematical 
vectors without physical meaning. The proposed strategy includes two steps. Firstly, the basic stress 
modes are divided into a set of sub-modes. Secondly, the sub-mode with largest similarity degree 
with the basic mode is selected as the optimal assumed stress mode for a hybrid element. The 
optimal stress modes for HQ8 are determined when Poison’s ratio is larger than 1/9 which is the 
case for most materials. 

Keywords: 8-node quadrilateral hybrid stress element; quantitative method; optimal assumed stress 
field; material weighting matrix based inner product; largest similarity degree 

Introduction 

Since the displacement elements exhibit over rigidity, the hybrid stress element was first formulated 
by Pian (1964) to resolve this issue where the stress field was assumed independently as 
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in which iσ ’s are the assumed stress modes, i ’s the corresponding stress parameters, and 
1{ , , }MP σ σ  the stress matrix. Besides, the displacement field is assumed as u Na , where N  

is the shape function matrix and a  the nodal displacement vector of the element. Then the element 
strain can be expressed as  ε Du Ba  where B DN  is the geometry matrix in which D  is the 
matrix of differential operator. Thus the element stiffness matrix can be obtained via the Hellinger-
Reissner variational principle as follows 
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Besides, the following relationships between the stress parameters and nodal displacements can also 
be obtained as 

 1β H Ga  (4) 

In the hybrid finite element analysis, a stress subspace including all the assumed stress modes was 
introduced by Zhang, Feng and Huang (2002) as 
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where dn  is the dimension of S , i.e., 3dn   for 2D and 6dn   for 3D. To develop high 
performance hybrid stress elements, a number of approaches for obtaining the satisfactory stress 
modes have been presented such as Pian and Sumihara (1984), Han and Hoa (1993), Sze (1996), 
Wu and Cheung (1995). The concept of natural deformation modes for hybrid elements was 
introduced by Huang (1991). Unfortunately since these natural deformation modes are very 
complicated, an iterative numerical procedure has to be employed to find the relating natural stress 
modes. Pian and Chen (1983) presented the basic deformation modes to determine the necessary 
stress modes, but the shear components were ignored in their basic strains. Moreover, because the 
energy product is used, their method is limited to the qualitative analysis between the basic strain 
modes and the stress modes. Zhang and Wang (2006, 2010) proposed a selection method with basic 
deformation modes to improve the classification method by Feng et al. (1997). The complicated 
natural deformation modes are replaced by the simple basic deformation modes and the energy 
product was used to avoid the numerical modal analysis. Zhang et al. (2011) developed the basic 
deformation modes into the orthogonal basic deformation modes. Zhang et al. (2006) compared the 
performance of different elements with different assumed stress fields. For higher-order elements, 
Bilotta and Casciaro (2002) proposed a 2D 8-node hybrid element with 14 modes in his assumed 
stress field so the number of modes is larger than the least for the optimal requirement of 13 modes. 
Cen et al. (2011) proposed the stress functions to derive the assumed stress for hybrid-stress 
function plane element with high accuracy. 
 
However, one existing problem is that there is still lack of rational way to find the satisfactory stress 
modes and tell that whether or not they are optimal for hybrid stress elements, particularly for those 
of higher-order. It is our attempt to find a suitable method to reveal the quantitative relationship 
between the different stress modes and obtain the optimal assumed stress modes for 8-node 
quadrilateral hybrid element (HQ8). 

A quantitative method to determine the optimal stress field 

Basic deformation modes and their relating basic stress modes 

For the hybrid element with n  degrees of freedom including r  rigid body motions and m n r   
deformations, following the procedures by Zhang and Wang (2006, 2010) the rigid body motions 
and pure deformations can be determined and separated. Thus the displacement field for pure 
deformation can be expressed as 
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where i ’s are the independent coefficients and iu ’s the basic displacements. The nodal 
displacement vectors for pure deformation can be readily obtained by substitution of the nodal 
coordinates into Eq. (6) as 
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where ia ’s are the basic deformation modes. By the geometry equation  ε Du Ba  with the basic 
displacements in Eq. (6), the hybrid element strain can be expressed as 
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where iε ’s are the basic strain modes corresponding to the basic deformation modes. Because the 
basic deformation modes include all the m  possibilities of the element to deform, they indeed can 
be used to describe any deformation of the element within these possibilities. In addition, since they 
are unique because of their linear independence, the derived basic strain modes were used to 
determine the zero-energy deformation modes in the element by Pian and Chen (1983) as well as 
Zhang and Wang (2006, 2010). However, in this paper we use the basic stress modes derived from 
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the basic strain modes to find the optimal stress modes for hybrid stress element. From Eq. (8) the 
following stress field can be expressed as 
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where i i i  σ Cε CBa  are the basic stress modes. In fact the stress field in Eq. (9) is that for the 
displacement element corresponding to the hybrid stress element. In other words, the stress field for 
the displacement counterpart can be expressed using the basic stress modes. That is because the 
basic deformation modes are derived directly from the displacement field (Zhang and Wang, 2006, 
2010). As we know, the number of assumed stress modes for hybrid element should satisfy 
M m n r   . Because the number of the basic stress modes is equal to the degrees of freedom for 
element m n r  , it is the least for the optimal requirement. However, inside the basic stress 
modes, some components are unnecessary. To verify this, we can take the basic stress modes as the 
assumed stress modes for hybrid element as ,  1, 2, ,i i i m  σ σ , namely, the stress field for 
hybrid element is assumed as  σ P β . Noting that 1S C , by Eq. (9) one has 
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where K  is the stiffness matrix for the displacement counterpart as 
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Equation (10) indicates that H  represents the energies of the displacement counterpart 
corresponding to the basic deformation modes. Substituting Eqs. (10) into Eq. (4), the stress 
parameters for hybrid element can be calculated as  

 1 1( ) ( )T T       β H G a A K A A K Aα α  (12) 

It is found that the stress parameters are exactly equal to the independent parameters for basic stress 
modes. So, consider Eq. (9), the stress field for hybrid element can be derived by Eq. (1) with Eq. 
(12) as 

      σ P β P α σ  (13) 

It is exactly equal to its displacement counterpart. This implies that the resulting hybrid element 
cannot remove the over rigidity from its displacement counterpart. In other words, there are 
unnecessary components inside the basic stress modes even though the number of these modes is 
the least as required. 

Construction of optimal stress field for hybrid element 

On one hand, the shortcoming of over rigidity for displacement element implies that there are 
unnecessary factors coupled with the necessary factors inside its stress field, i.e., the basic stress 
field in Eq. (9). On the other hand, there is no denying that it has great success. Therefore, the 
necessary factors in the basic stress field are major while the unnecessary factors are minor. Since 
the basic stress field can be expressed by the basic stress modes, one can conclude that there are 
unnecessary components coupled with the necessary components in the basic stress modes, where 
the necessary components are major while the unnecessary components are minor. Our attempt is to 
obtain the necessary components and without the unnecessary components from the basic stress 
modes. For this purpose our procedure consists of two steps.  
 
Step 1 (Breaking basic stress modes into sub-modes) 
 
We take every component of the basic stress mode to construct a sub-mode. Thus the basic stress 
mode is broken into several sub-modes and can be expressed by the sum of them as 
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where ( )i k ik j σ σ  are the sub-modes in which ik ’s are the constant coefficients dependent upon 
the material parameters and jσ ’s the stress modes of uni-axial stress or pure shear stress without 
any constan coefficient. Since all the sub-modes are uni-axial stress or pure shear stress, they can 
only be essential and not redundant. 
 
Step 2 (Comparing sub-modes with their basic stress mode) 
 
The sub-modes are compared with their original basic stress mode. The sub-mode with larger 
similarity degree implies that it is more similar to the original basic stress mode than others, so it 
represents the main feature of this basic stress mode. Since the main features for the basic stress 
modes are good, the most similar sub-mode which reflects the main features can be selected as the 
optimal mode.  
 
To investigate the quantitative relationship between the sub-modes with their basic stress modes, 
their similarity degree is needed which in general is defined as the cosine of the angle between 
vectors. According to the proposition by Zhang et al. (2007), the equivalent hybrid element can be 
resulted from the alternative assumed stress field in which an original mode is multiplied by a 
nonzero constant. It is easy to verify that the magnitude of this constant does not affect their angle 
while its sign does. In other words, the reverse direction of the sub-mode will change the cosine 
sign of its angle with original basic mode. For this sake, in this paper the similarity degree is 
defined as the absolute value of the cosine of the angle as 

 Similarity degree cos ik  (15) 

where ik  is the angle between ( )i kσ  and iσ . Thus, cos 1ik   when 0ik    or 180 , indicating jσ  
is in the same direction as iσ  or in the reverse direction to iσ . However, no matter which case, jσ  
plays the same role to result in the hybrid elements equivalent to each other. On the other hand, 
cos 0ik   when 90ik   , indicating ( )i kσ  and iσ  are orthogonal to each other so jσ  cannot be 

used to suppress the zero-energy mode for the element. 
 
For the subsequent development, the following subspaces are defined as 
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where n D  is the deformation subspace by the basic deformation modes ia ’s, dnE   the 
basic strain subspace, dn S   the basic stress subspace, and dnS   the stress subspace by the 
mode jσ ’s of uni-axial stress or pure shear stress, in which 3dn  , 13m   and 18M   for 2D 8-
node element. As discussed earlier, to find the optimal stress modes for hybrid element, the sub-
modes have to be compared with their original basic modes using their similarity degrees. However, 
the similarity degree depends upon the inner product. It is well known for the energy product 
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This is a conventional inner product where both the strain modes and stress modes are considered as 
mathematical vectors. However, the strain and stress belong to different mechanical concepts, and 
their analysis should be in mechanics for our attempt. In addition, even though the inner product has 
the physical meaning of energy, there is not any physical meaning in the associated norms or 
generalized lengths of strains and stresses as 

    1/2 1/2
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In other words, the strain and stress are only considered as mathematical vectors without any 
physical meanings. Clearly, without appropriate norm and the relating inter angle, the comparison 
between the stress modes and basic strain modes is impossible. So, the further discussion is difficult, 
particularly for some stress modes of which the energy products with their related basic strain 



5 
 

modes are equal to each other. Therefore, the inappropriate energy product is found to be the big 
barrier to determine the optimal stress modes inside the basic stress field. To overcome this problem, 
the inner product with material matrix as weighting matrix is introduced as 

 , ( ) ( ) ,  , ( )
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The associated norms are expressed as 
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These norms have the specific physical significance as the flexibility of stress (or stiffness of strain), 
which is the square root of complementary energy (or deformation energy, in the case of linear 
elasticity they are equal to each other). It shows the relationship between two stress modes. So this 
inner product is more reasonable. For this sense, the inner product in Eq. (20) can be used for the 
quantitative analysis to calculate the similarity degree of the sub-modes with their basic stress mode. 
It should be noted that our inner product in Eq. (19) is the development from Zhang et al. (2002) 
where our inner product is defined in the mixed subspace of basic stress subspace S  together with 
S  in Eq. (16) rather than the assumed subspace S  in Eq. (5). Based on our inner product in Eq. 
(19), the sub-modes can be compared with their basic stress modes to determine the optimal mode 
according to their similarity degrees. 

Optimal stress field for 2D 8-node hybrid element 

For the 2D 8-node quadrilateral hybrid element (HQ8) in 
Fig.1 where 5,6,7,8 are the mid nodes on the sides, there 
are 16n   degrees of freedom including 3r   rigid 
body motions and 13m n r    deformations. The 
element displacement field in Eq. (6) can be written as 
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 (21) 

where , , 0,1, ,7i iA B i    are the coefficients dependent upon the nodal displacements. Thus the 
basic strains modes in Eq. (8) can be derived as 
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In addition, the basic stress modes in Eq. (9) can be obtained as 
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in which 2(1 ) ,  (2(1 ))C E G E      for Young’s modulus E  and Poison’s ratio  . To take 
away the unnecessary components inside the basic stress modes in Eq. (23), they are broken into 
sub-modes in Eq. (14) with jσ ’s expressed as 

 2 2
1 2 18 3 3 3 3 3 3{ , , , } { , , , , , }x y xy x y P σ σ σ I I I I I I  (24) 

in which 3I  is the identity matrix of 3 3 . Then sub-modes are compared with their original basic 
stress modes to select the optimal stress modes. The details are provided as follows: 

 
 

Fig.1 2D 8-node quadrilateral element
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(1) For 1σ , it can be broken into its sub-modes as 
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namely, 1 1 1 1 2 11 1 12 2( ) ( )       σ σ σ σ σ , where 11 C   and 12 C  . Based on our inner product 
in Eq. (19) the following similarity degrees can be calculated as 

 11 12
0

cos ,  cos 0
E

d
    (26) 

where 0d C . Since 11 12cos cos  , one can conclude that 1 1( )σ  is more similar than 1 2( )σ  
with 1σ . It indicates 1 1( )σ  represents more features than 1 2( )σ  inside 1σ . Therefore, 1σ  is selected 
as the optimal stress mode for hybrid element with respect to 1a  as 1 1σ σ . The cases for 2σ , 5σ , 
and 9σ  are similar to 1σ  so that 2 2σ σ , 5 4σ σ , and 9 8σ σ .  
 
(2) For 3σ , since it is a pure shear stress mode as 
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namely, 3 3 3 33 3( )   σ σ σ , where 33 2G  , the optimal stress mode is selected as 3 3σ σ . The 
cases for 12σ , and 13σ are similar to 3σ  so that 12 9σ σ  and 13 6σ σ .  
 
(3) For 4σ , it can be broken into its sub-modes as 
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namely, 4 4 1 4 2 4 3 41 7 42 8 43 6( ) ( ) ( )           σ σ σ σ σ σ σ , where 41 42,  C C    , and 43 2G  . 
The following similarity degrees based on our inner product can be obtained as 
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1 1
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where 1d C G  . Due to the fact that the Poison’s ratio in general satisfies 0 0.5  , one has 
G E . Thus by Eq. (29) one can obtain 41 43 42cos cos cos    . Then we find the expected 
optimal mode for 4a  as 4 7σ σ . Obviously, by our systematic scheme, the parasitic shears 

xy Gx   in 4σ  are taken away automatically. The case for 8σ  is similar to 4σ  so that 8 5σ σ .  
 
(4) For 6σ , it can be broken to its sub-modes as 
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 (30) 

namely, 6 6 1 6 2 6 3 61 10 62 11 63 15( ) ( ) ( )           σ σ σ σ σ σ σ , where 61 622 ,  2C C    , and 63   
G . The following similarity degrees based on our inner product can be obtained as 
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where 2 4 5 16 9d G C  . Since 0 0.5  , one has 61 63cos cos 2 10(1 ) 3 1     . Thus 
61 63 62cos cos cos    . Then the expected optimal mode can be determined as 6 10σ σ . The 

case for 10σ  is similar to 6σ  so that 10 11σ σ .  
 
(5) For 7σ , it can be broken to its sub-modes as 

 

2 2 2

2 2 2

0 0 0 0

0 0 0 2 0

2 0 0 2 0 0

Cy Cy y

Cy Cy C C y G

Gxy Gxy xy

  
            
                              
             

            

 (32) 

namely, 7 7 1 7 2 7 3 71 16 72 17 73 12( ) ( ) ( )           σ σ σ σ σ σ σ , where 71 72,  C C    , and 73   
2G . The following similarity degrees can be obtained as 

 71 72 73
2 2

2 5 4
cos ,  cos 0,  cos

5 3

E G

d d
      (33) 

Since 71 73cos cos 9(1 ) 10    , one can conclude 71 73cos cos   when 1 9   which is the 
case for most materials. Then the expected optimal mode can be selected as 7 16σ σ . The case for 

11σ  is similar to 7σ  so that 11 14σ σ .  
 
In summary, the final optimal stress modes are expressed as 

 

1 13 1 2 3 7 4 10 16 5 8 11 14 9 6

2

2

{ , , } { , , , , , , , , , , , , }

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

y x xy y

x y xy x

y x

 

 
   
  

P σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

 (34) 

Using the method by Zhang and Wang (2006, 2010), it is easy to verify that the element HQ8 
constructed by the optimal stress modes in Eq. (34) is free of zero-energy mode. 

Numerical example 

 
Fig 2. Cantilever beam (a) Q4 (b) Q8 

 

Table 1  Tip deflections vA for cantilever beams 
 

  0.25 0.49 0.499 0.4999
Q4 69.30 18.22 5.71157 2.713
Q8 93.34 73.79 65.3585 46.366

HQ4 93.23 75.20 74.2974 74.206
HQ8 93.72 75.49 74.5796 74.488
Exact 93.75 75.99 75.0999 75.010

A simple test for volume locking is given in Fig 2. This is an elastic plane-strain cantilever beam for 
1500E   and different Poison’s ratio  . It is simply supported and subjected to pure bending. The 

results are provided in Table 1. It is shown that, when   tends to 0.5, the solution for improper 
elements show volumetric locking while HQ8 yields the most accurate solution for the tip 
deflection vA. So the present element can overcome the volumetric locking successfully. 
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Conclusions 

A new inner product with the material matrix as the weighting matrix was introduced to study the 
relationship quantitatively between the different stress modes. Besides, the basic stress modes are 
considered instead of the basic strain modes in the conventional hybrid finite element formulation. 
They are broken into a set of sub-modes and these sub-modes are compared with their original basic 
stress modes to construct the optimal stress field for 2D 8-node quadrilateral hybrid element. The 
proposed method is straightforward to investigate the basic stress modes and determine the optimal 
stress modes, while the methods based on the conventional energy product as well as the modal 
technique can only be used to select the zero energy free stress modes. 
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