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Abstract

In this study, effects of laminate misalignment the thermoelastoviscoplastic properties of
ultrafine plate-fin  structures are investigated ngsi a homogenization theory for

thermoelastoviscoplasticity. For this, the homogation theory for time-dependent materials is
combined with the homogenization theory for thertasigcity. Moreover, the substructure method
is introduced into the theory to deal with the ramtess of laminate misalignment in ultrafine
plate-fin structures. The present method is thepliegh to the analysis of thermoelastoviscoplastic
behavior of ultrafine plate-fin structures madeaoNi-based alloy with laminate misalignment
subjected to a macroscopic temperature incremdrd. résults reveal the effects of the laminate
misalignment on the macroscopic and microscopionbelastoviscoplastic properties of ultrafine
plate-fin structures.

Keywords: Plate-fin structure, Laminate misalignment, Randessn Thermal stress,
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Introduction

Ultrafine plate-fin structures for heat exchangersich are manufactured by stacking thin metallic
plates and fins alternately, offer high heat exgeanefficiency, because their small structures
provide large heat-transfer areas. Hence, thegxgected to be used in the heat exchangers of high
temperature gas-cooled reactor gas-turbine (HTGR-8/Btems. The HTGR-GT systems are
regarded as some of the most promising power gengraystems because of their excellent
balance between power generation and economigegftig. In the systems, helium is employed as
a working fluid, which becomes extremely hot and caach 950C. It is therefore important to
analyze thermoelastoviscoplastic behavior of ulieplate-fin structures.

In general, fins in an ultrafine plate-fin strueware not necessarily stacked in precise aligniaent
illustrated in Fig. 1(a), but can have misalignmasmshown in Fig. 1(b). Hence, when analyzing the

(@) (b)

Figure 1. Ultrafine plate-fin structures (a) without laminate misalignment,
(b) with random laminate misalignment
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thermoelastoviscoplastic behavior of ultrafine @lih structures, such laminate misalignment
should be taken into account. In the previous s{if@ymamoto et al., 2011), the effects of laminate
misalignment on the elastic-viscoplastic behavibplate-fin structures have been revealed based
on the homogenization theory for nonlinear timeatefent materials (Ohno et al., 2000). However,
the effects of laminate misalignment on the therdasieviscoplastic behavior of plate-fin structures
have not been revealed yet.

In this study, therefore, the effects of laminatésaiignment on the thermoelastoviscoplastic
properties of ultrafine plate-fin structures argdstigated based on a homogenization theory. For
this, the homogenization theory for thermoelastyasticity combined with the substructure
method (Zienkiewicz and Taylor, 2000) is proposed analyze the thermoelastoviscoplastic
properties of ultrafine plate-fin structures wilndom laminate misalignment. The present method
is then applied to the analysis of thermoelast@ptastic behavior of ultrafine plate-fin structures
made of Ni-based alloy with random laminate migalgnt subjected to a macroscopic temperature
increment. The results reveal the effects of lateinmisalignment on the macroscopic and
microscopic thermoelastoviscoplastic propertiesltrafine plate-fin structures.

Homogenization theory for thermoelastoviscoplastibehavior of plate-fin structures with
random laminate misalignment

Let us consider an ultrafine plate-fin structuré¢hwiandom laminate misalignment, and its unit cell
Y (Fig. 2). It is assumed thathas N fin layers with random laminate misalignment, dnat Y is
periodically stacked with laminate misalignmenttive y, -direction. For thisy , the Cartesian
coordinatesy, are defined, and microscopic stress and strain demoted aso;(y,t,T) and
&;(y,t,T), respectively, Where is time andT is current temperature. The equilibriumaf can

be expressed in a rate form as

o, =0, (@H)

1]

where (), and (") indicate differentiation regarding andt, respectively. The base material of
the plate-fin structure is assumed to exhibit Iingasticity, nonlinear viscoplasticity and thermal
expansion as characterized by

0y =G (€ — B -Aay), (2)

where ¢, and 3, indicate the elastic stiffness tensor and viscglastrain rate of the base
material, respectively, andT anda, indicate the temperature increment and coefficérinear
expansion of the base material, respectively. Thiea,integration by parts and the divergence
theorem allow Eq. (1) to be transformed to

[ 0700y =] oynwdr =0, (3)
where /” indicate the boundary of , andv, andn; indicate the arbitrary variation and the unit
vector outward normal t@ , respectively. Now, to examine boundary integeairt in the above
equation, let us dividé™ into six parts,/ 5, [gcs [ ops o e @nd [ -, @s shown in Fig. 2(b),
and consider three axes, S and y. Then, the boundary integral term in Eq. (3) carekpressed
as

jranjvidf ZIrABaiiniUidrAB +LBC g;nud/ g +LCD g;nud/ o,

(4)

+| o nvdl g +I gnud/ g +I

onvd/l”
Meo U] Mg e ij i AF
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First, let us focus o™ . and /. Figure 2 shows that the distribution @f andv on AF and
CD are identical, respectively, because the intestraicture of the plate-fin structure has the
periodicity in thea -direction. Whereasy, takes opposite directions on AF and CD. As a tesul
the following equation can be obtained:

J' o.nuvd/l +I o.nuvd/l o =0. (5)

[/ | L/ |

Second, let us focus ofi.. and /.. Figure 2 shows that the same situation exists®m@and BC
in the S-direction, resulting in the following equation:

j J”njfud/_FE+J' onudl . =0. (6)

[/

Finally, on /", and /,, the usualY -periodicity is satisfied in thg’-direction as seen from Fig. 2.
Thus, we have

j onudl g +j o.nud/ o =0. 7)

ij i
Substituting Eq. (5), (6) and (7) into Eq. (4), E4). vanishes, and Eq. (3) results in
[,oinudy =0. (8)

ij i
Using Egs. (2) and (8), we obtain the following agon
J. Cuklu v, dY =- EkIJ. Cljklvi,de-l-'[ QJMﬁMUi,de'*'ATJ. Ciu @i Y, 9)

P, i, ]

where u*(y,t,T) and E|l indicate of the perturbed velocity field definenl Y and macroscopic
strain rate, respectively. In this casg,can be expressed as

WY LT) =X (Y TE O+ (Yt T)+AT ¢y, (vy.T), (10)
/—AF /_FE
A F E
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Figure 2. Ultrafine plate-fin structures with random laminate misalignmet,
(a) whole structure and its unit cellY, (b) unit cell Y and substructuresA;



where x*, ¢ andy, in the above equation denote the characteristictions determined by
solving the following boundary value problems¥Ynusing the finite element method (FEM):

[, it Y == Gty Y 1)
,[Y CiogPp.ath, dY = J.Y Cja B 1A (12)
,[Y G .00, Y = L G, v; 1 AY - (13)

Then, the evolution equation of microscopic strege and the relation between macroscopic stress
rate and strain rate are derived as follows:

0; (y,t,T)= Cing (5pk5q| +/Yl[<)|,q)Ek| ~ G (Ba =P, )_ATCIjkI @y —%y)), (14)
Zij (y,t’T) = <C.qu (kaa_ql +X|,§|,q )> Ekl _<C|jkl (ﬂm _¢k,| )> _AT<C|jkI (akl _‘/Ik,l )> ) (15)

where g; indicates Kronecker's delta, ariél) denote the volume averageYrdefined as

1
#H=— Y . 1
(# V] IY#ﬂ (16)
Here, |Y| signifies the volume oY .

Substructure Method

First, the unit cellY is divided into substructured, (i=1,2,...N)as shown in Fig. 2(b). In
addition, the amount of laminate misalignment betwehe substructures is defined ds

(1=1,2,...N ) illustrated in Fig. 2(b). Then, the boundary valpmblems for the individual
substructure in a finite element discretized fram derived as follows:

kxikl =tk i=12..N) 17)
kg =g, (=12,..N) (18)
kg =h, (=1,2,..N (19)

Next, the components gf*, ¢, andy, are respectively divided into two pargg!“” and x“,

¢ andg!”, andg® andy ", where( ) and( )"’ represent vectors or matrices for the

internal and the boundary nodesAf respectively. Then, the boundary value problemnsA, Eqgs.
(17), (18) and (19), are rewritten into the follogwiequations:

(2) (r) Kl (2) K ()
o oo ey =1 i (20)
k(FO) k(f) Xikl(/') f K(r)

k@ k@ ¢i(!2) _ gi(ﬂ) 21)
kU k|| g B g’



@ p@n] (@ (@)
K@ K () _ [0 22)
KD kO {1t [T RO

where 9, 2 andg? can be expressed as

KOO = (KDY E(FHR) @My (23)
312 = (K2) (g -k "), (24)
l/ji(g) — (k(Q))—l(hi(Q) _ k(f-’/')wi(/—))_ (25)

The eliminations ofy“?, ¢® andg'? from Egs. (20), (21) and (22) using the above tqos
respectively yields

KOO =T (=1,2,..N ), (26)
KOgD =g, (=1,2,..N ) (27)
KOO =R, (=12,..N) (28)

wherek ™, T4 g andh” are expressed as follows:

KO =K — gD (g @Dy @) (29)
FHOD = § 0D (@) (@)1 g (@), (30)
g =g -k (k@) 1g@, (31)
RO = -k (K@) h@ (32)

Finally, Egs. (26), (27) and (28) are respectivadgembled into the following equations, which are
boundary value problems with respect to just thenldary nodes of all substructures:

Ky = RO (33)
K(/')¢(/') :G(/')' (34)
K(/')w(/') — H(/'), (35)

where K") stands for the matrix consisting kf"?, F*“? G) and H"" indicates the vector
consisting of f¥?, g andh'”. Moreover, y*, ¢ andg"” denote the nodal vectors of
the characteristic functions at the boundary noafesubstructures. The characteristic functions
X7, ¢ andy'” are determined by solving Egs. (33), (34) and (@f) appropriate boundary
conditions. Then, the characteristic functions e internal nodesy“”, ¢/ andg¢'? , are
calculated using Egs. (23), (24) and (25).

Analysis conditions

In the present analysis, thermoelastoviscoplastopgrties of ultrafine plate-fin structures with
random laminate misalignment under temperature gtnafi were analyzed using the above
method. A base metal for the plate-fin structures Wastelloy X, which was a Ni-based alloy with
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excellent heat resistance. The material constas¢sl @re listed in Table 1, which depend on
temperature. The substructufe was defined and divided into four-node isoparaimeiements as
shown in Fig.3. This substructus was two-dimensional rather than three-dimensioaad| the
generalized plane strain condition was assumedyusecthe plate-fin structures were assumed to
have uniform and infinite material distributiontime y, -direction.

The number of layers of unit cellwas five kinds that includé&l =10, 20, 30, 40 and 50. Twenty
patterns of random laminate misalignment were gieeN =10, 20, 30, and ten patterns t¢ =40,
50. In addition, five case of periodic laminate atignment, i.ed =0, d=1/8,d=1/4,d=3/8
andd =1/2 wherel indicates the width of substructug, were also considered to compare with
random laminate misalignment. Macroscopic tempegatincrement was from 20C (room
temperature) to 200, and temperature raidl =1K/s was applied to the plate-fin structures. No
macroscopic strain (Macroscopic strain rate) wasiagd to occurk; =0).

Results of analysis

First, Figs. 4(a) and (b) respectively show the maswopic stress-temperature relations in yhe
direction in case oN =10 and N =50 with macroscopic temperature increment from’QQto
200°C. These figures show the results of all random fheat@ misalignment patterns whéh=10

and N =50. In addition, the macroscopic stress-temperatwiations of periodic laminate
misalignment ford =1/8 andd = 3| /8 are also shown in the figure, which exhibited rieximum
and minimum stress, respectively. It is seen framfigure that the results of all random laminate
misalignment patterns exist between two resuliseviodic laminate misalignment. Furthermore, as
the number of layerdN increases, the dispersion of macroscopic strespdmture relations
decreases, and they converges to an intermedite obd =1/8 andd =3/ /8.

Next, Figs. 5(a) and (b) respectively show the mmaxn microscopic compressive stresses inyhe
and y, -directions for all the random laminate misaligntpatterns atN =10, 20, 30, 40 and 50.
Also, the maximum microscopic compressive stregseshe periodic laminate misalignment are
shown in the figure as the results fr=1. As seen from Figs. 5(a) and (b), the maximum
microscopic compressive stresses of random lamméatalignment tend to be higher than those of
periodic laminate misalignment. In addition, as tioenber of layerdN increases, the dispersion of
microscopic stresses decreases, which is sinelatency to the macroscopic stress-temperature
relations. However, the maximum microscopic stregsmverge to not an intermediate but higher
value, meaning that elastic-viscoplastic properbéplate-fin structures have to be investigated
both macroscopically and microscopically.

A Table 1. Material properties of Hastelloy X
o
ol I Poisson's ratio v 0.32
(\,' Reference strain rate g 1 s] f0
Yo - Stress power index n -0.0295T+331b
< 2.4 >|_ Yourg's modulus E [GPa] -0.0684T+212.2
. ‘;NT Coefficient of thermal expansiomr {10 /K] 0.0031T+13.54¢
Vi unit: mm Yielding stress g, BIP -&106x T+ 0.0013F 0.6826B91.51
s HASTELLOY®X ALLOY, HAYNES Interational(1997)

Figure 3. SubstructuresA; and
finite element mesl



Conclusions

In this study, the homogenization theory for theetastoviscoplasticity combined with the
substructure method was proposed to investigate efifiects of laminate misalignment on
thermoelastoviscoplastic behavior of ultrafine @iah structures. The present method was applied
to the analysis of thermoelastoviscoplastic behawdnd thermal stress of ultrafine plate-fin
structures with laminate misalignment subjectechsxroscopic temperature increment frontQ0

to 200°C. It was shown that laminate misalignment affebts thermoelastoviscoplastic behavior
and thermal stress of plate-fin structures bothrosmopically and microscopically.
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Figure 4. Macroscopic stress-temperature relationsf ultrafine plate-fin structures
with random laminate misalignment iny;-directions , (a)N=10, (b)N=50

'3'-50 I T .I T ‘ ‘ 1 H‘_44 .I T T T
O o ' L © a r d=I/8 °
g N . [ 8 =43¢ 0} I | i 1
O L Q [ ]
a §_450 d=1/4 4 3 g "Nd=l/4e o 1
Sp= \ o 5 5420w _* 4
Eo | d=as gD e |
g2 L £.2 .410- -
S 2 400 4 29
€D I £ :
< g | . —0=1/8 < %)__400? _

8 _35 N L dzol L | L | L | L ] 8 _39 ‘/‘ | L | L | L | L

1 10 20 30 40 50 10 20 30 40 50
Number of substructure$ Number of substructurds
(@) (b)

Figure 5. Effects of number of substructuresN on maximum microscopic compressive stress ,
(a) yp-direction, (b) y.-direction



