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Abstract 

This study proposes a method for a continuum description of discrete dislocation systems based on 

Field Theory of Multiscale Plasticity (FTMP). Dislocations are linear defects generally extended in 

3D space in complex manners: They can be bent (or curved), mutually tangle, multiply, annihilate 

and even yield topological changes (e.g., junction formations). Those pieces of information are 

discrete in nature and, at the same time, include complicated spatial details. FTMP-based 

incompatibility representation of the 3D dislocation system enables us to express not only the 

density-related information (i.e., change in the total length) but also those about the configurational 

changes such as rigid-body translations, local bowing-out and pinning-unpinning behaviors, 

including their directionalities, which are absent in the conventional dislocation density-based 

representation.  The associated energy flow is also examined in detail based on the flow-

evolutionary perspectives that relates the spatio-temporal fluctuation in the elastic strain energy 

with the incompatibility field.   

 

Keywords: Field theory, Dislocation, Discrete dislocation dynamics, Incompatibility tensor, 
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Introduction 

Dislocation is a major carrier of plasticity in crystalline solids, which is often compared to 

“wrinkle” of a wide-spreading carpet as a tangible simile. Although dominant roles of dislocations 

have been well-recognized and well-documented to date, still there seem to be many mysteries 

remain unfolded, e.g., with respect to their critical roles in controlling micro/macroscopic properties 

of the targeted crystalline materials. One of the reasons is that dislocations do not always determine 

the system response individually but frequently do as groups, like as substructures evolving during 

the course of elasto-plastic deformation.  One of such eloquent examples is “dislocation cells” that 

are universally observed in plastically-deformed crystals [Kubin (1996), Raj and Phar (1986)], in 

the sense that they substantially controls the overall mechanical properties notwithstanding we do 

not essentially know why and how they are formed. Since the dislocation cells are composed of 

extremely large number of dislocations having roughly a periodic structure with wavelengths 

commensurate with submicron to micron, which is much larger than the magnitude of Burgers 

vector (characteristic (intrinsic) length of dislocation), it may safely be said that this dilemma is a 

critical “missing link” against achieving multiscale modeling of plasticity in terms of 

“transcending” scales.  
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To solve the above dilemma, we ought to establish, above all, how to view dislocation aggregates in 

coarse-grained manner, maintaining their linear nature including the configurational complexities 

when necessary. Figure 1 shows a schematic drawing for  “discrete vs. continuum” dislocations in 

2D and 3D.  One can notice exclusive difficulties in expressing 3D discrete dislocations based on a 

continuum picture, whereas relatively easy method may be found for 2D counterparts such as using 

distribution functions like for aggregate of particles. We must admit almost nothing has been done 

in this respect since Kroner suggested a use of statistical mechanics in his approach based on multi-

point dislocation correlation function for expressing distributed dislocations [ Kroner (1970)].    

 

This study extensively discusses a method for describing complex dislocation systems based on 

Field Theory of Multiscale Plasticity (FTMP) [Hasebe (2004), (2006), (2011)], taking an example 

of simplified dislocation arrangements, after briefly showing the FTMP-based 3D evaluation 

scheme.  The example to be taken is about damping motions of dislocation segments, leading 

practically, e.g., to the apparent reduction in elastic moduli as a macroscopic mechanical response.  

 

 

 
 

Figure 1.  Discrete vs. continuum representations of dislocation aggregates. 

 

About “Apparent” Reduction in Elastic Modulus  

Experimentalists might have noticed decreasing elastic modulus observable in loading and 

reloading stress-strain curves [e.g., Yang, et al. (2004)], implying the elastic modulus (e.g., Young’s 

modulus) is not always be constant at least apparently during elasto-plastic deformation. This 

phenomenon causes many engineering problems, greatly affecting the predicting precisions of 

practically-important mechanical properties of metallic materials such as springback and the 

amount of ratcheting. Few studies, however, seem to have been carried out (this phenomenon seem 

to have not been taken so seriously by analytical researchers) probably and partially because of lack 

of such practical experiences.  

 

The simplest mechanism yielding the “apparent” reduction in the elastic modulus is damping 

motions of pinned dislocation segments. During loading and unloading, pinned dislocation 

segments bow out and subsequently come back to the original configurations if there is no internal 

stress. This “reversible” plastic response consequently contributes to the “apparent softening” in the 

elastic stress-strain response, which appears as the apparent “reduction in the shear modulus.”  
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Let p  be the recovered plastic strain and   be the apparent decrement of the shear modulus 

caused by p , we have, 

 1 1 1 1 /e p                                                                      (1) 

What we resultantly observe as the shear modulus from the given stress-strain response is 

 
1

1 /  


     instead of  .  Therefore, the “apparent” reduction ratio of the shear modulus is 

given by, 

 
1

/ 1 /   


                                                                (2) 

where   denotes the shear modulus to be observed.  Theoretically, /   can be evaluated as, 

 
1

3 3/ 1 6N L 


                                                           (3) 

with N  is the number of dislocation segments, while L  and  are the simulation cell size and the 

segment length, respectively. 

Analytical Model and Procedure  

FTMP-based Incompatibility Model and Duality Diagram Representation 

Given 3D dislocation configurations, the dislocation density tensor ij  is firstly evaluated for each 

sub-cell, where the simulation cell is divided into 10 10 10   sub-cells in the present study. Here, a 

coarse-grained line vector is introduced for the dislocations contained in each sub-cell, without 

which all the details about the segment-wise geometrical fluctuations affect the distinction between 

edge and screw components.  The definition of ij  in this context is given as, 

i ji jB dS                                                                      (4) 

where iB  is the Burgers vector corresponding to the coarse-grained line vector and jdS  is the area 

through which the dislocations penetrate. Note the total length of the dislocations within the sub-

cell is renormalized into the coarse-grained counterpart to conserve the density.  

 

Based on the thus evaluated dislocation density tensor, the incompatibility tensor is further 

evaluated as, 

 ij ikl k jl SYM
                                                               (5) 

where the spatial derivative is evaluated for a given arbitrary coarse-grained region by utilizing the 

least-square method [Yoon (2011)].  

 

According to the flow-evolutionary hypothesis [Hasebe (2013)] in FTMP, the incompatibility tensor 

is equated with the fluctuation part of the energy-momentum tensor, where both the tensors are 

defined in the four-dimensional space-time. The temporal components provides the following 

specific relationship (assuming static conditions),  
e

KK U                                                                 (6) 

where   is named duality coefficient. Based on Eq.(6), we can draw duality diagrams, i.e., the 

relationship between the trace of the incompatibility tensor and (the fluctuation part of) the elastic 

strain energy.  The duality diagram representation allows us to “visualize” the energy conversion 

process or “energy flow” in terms of dislocation movements within the system.  

Analytical Conditions and Simulation Models 

We perform a series of dislocation dynamics simulations [Zbib (2002)] for obtaining dislocation 

systems to be examined. Figure 2 shows the simulation cell with (2000b)
3
 edges, together with a 

prescribed slip plane and Burgers vector. We assume α-Fe (BCC), with the density 7.88×10
3
kg/m

3
, 
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the shear modulus 80.0GPa, Poisson's ratio ν=0.324, and the magnitude of Burgers vector 

b=2.483×10
-10

m.  The external shear stress τ is applied as shown in Fig.2 until 500 steps (loading) 

and is then reversed until 1,000 steps (unloading), with the increment of the simulation time step 

being 1.8×10
-12 

sec. 
 

 
 

Figure 2.  Schematic drawing of simulation cell. 

 

Pinned dislocation segments are placed in the simulated cell as schematically shown in Fig.3, where 

the initial length of each segment is set to be 200b (b is the magnitude of Burgers vector). We 

consider roughly two arrangements of the dislocation segments, as shown in the figure, i.e. 

horizontal (Case A) and vertical (Case B) arrangements with respect to the slip plane． Note the 

Case B (vertical arrangement) may be regarded as a simplified model for dislocation walls.  

 

 
 

Figure 3.  Schematics of simulation models with two representative dislocation arrangements, 

Case A (horizontal arrangement) and Case B (vertical arrangement). 

 

Results and Discussions 

Stress-strain response and apparent reduction in shear modulus 

Figure 4 shows examples of simulation results for Case A and B with 175N , showing bowing-out 

dislocation segments. As observed in these snapshots, we immediately learn that the bowing-out 

motions are greatly restricted in Case B compared with Case A, probably due to the induced back 

stress field.   
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The corresponding shear stress-shear strain curves to the results in Fig.4 are presented in Fig.5. The 

restricted bowing-out motions of the dislocation segments for Case B results in much smaller slope 

of the diagram than those in Case A. Both the cases, however, exhibit nearly “reversible” stress-

strain responses; the plastic shear strain caused by the bowing-out motions of dislocation segments 

is roughly recovered to zero when the bowed-out segments come back to the original configuration 

(i.e., straight line).   

 

The corresponding “apparent” reduction ratios of the shear modulus to the results in Fig.5 are 

calculated by using Eq.(2) substituting 2000L b  and 200b . Figure 6  shows variations of the 

“apparent” reduction rate of the shear modulus with increasing number of dislocation segments N , 

comparing Cases A, B and the theory given by Eq.(3). The results for Case A agree well with the 

theory, whereas Case B exhibits deviation from the theory as N  increases.  The deviation 

corresponds to the greatly-restricted bowing-out motions of dislocation segments seen in Fig.4. 

 

 
 

Figure 4.  3D and 2D snap shots of bowing-out dislocation segments for Case A and Case B 

(The number of dislocations is 175). 
 

 
Figure 5.  Shear stress-plastic shear strain responses for Cases A and B. 

 



6 

 

                                         
Figure 6.  Relationship between “apparent” reduction rate in shear modulus 

and number of dislocation segments. 

Duality diagram representation  

We examine the above bowing-out responses of the dislocation segments based on the duality 

diagram representation based on the flow-evolutionary hypothesis [Hasebe (2013)]. Figure 7 

displays a duality diagram for N=175, comparing between Cases A and B. One can observe a large 

difference between the two cases. As demonstrated, Case A exhibits a sharp increase in η almost 

vertically in the diagram, meaning most of the externally-applied work is consumed as the growth 

of the incompatibility, without being stored in the dislocations.  In sharp contrast to this, in Case B, 

the incompatibility grows but the growth rate tends to saturate as the elastic strain energy increases. 

This indicates that the external energy is effectively stored in the bowing-out dislocation segments 

until the critical configuration is reached. 

 

The above distinct trends between Case A and B well correspond to those in the bowing-out 

configurations of dislocation segments in Fig.4.  Thus way, the energy flow associated with the 

configurational changes of the dislocations can be visualized via the duality diagram.  
 

Let us discuss further the duality diagram in terms of the interrelationship with the system response, 

i.e., the apparent reduction in the shear modulus discussed above associated with Fig.6. it should be 

noted that the duality diagram displayed in Fig.7 does not take into account the contribution of the 

external work done by the applied stress in the abscissa, meaning the indicated energy flow is 

limited to the internal one solely associated with the configurational change of the dislocation 

segments, thus not directly representing the stress-strain response as a system.  If we consider the 

contribution of the external work, the duality diagram can be redrawn as Fig.8, which is regarded as 

being reflected the response of the system.  From this re-drawn diagram, we evaluate the duality 

coefficient via / eU   , which measures how much strain energy is converted to (or 

dissipated into)  local plasticity (the bowing-out motions of dislocation segments, in this case) that 

manifests itself as the growth of the incompatibility tensor.   
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Figure 7.  Duality diagram: relationship between η and ΣU
e 

(The number of dislocations is 175). 

 

 
Figure 8.  System-wise duality diagram: relationship between η and ΣU

e 

(The number of dislocations is 175). 

 

Figure 9 correlates the apparent reduction rate of the shear modulus with the above-obtained duality 

coefficient. There observed a good correlation between the two regardless of the arrangements 

(Cases A and B) and the number of dislocation segments, implying the duality coefficient can be a 

parameter measuring the system response for the present dislocation systems.  
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Figure 10.  Relationship between reciprocal of duality coefficient 

    and apparent reduction rate in shear modulus. 

Conclusion 

This study discusses FTMP-based continuum description of discrete dislocation systems, together 

with the duality diagram representation based on the flow-evolutionary hypothesis. Two typical 

dislocation arrangements yielding distinct bowing-out configurations of dislocation segments are 

examined in connection with the system response leading to the “apparent” reduction in the shear 

modulus.  The configurational changes of the dislocation segments are demonstrated to be rationally 

expressed by the incompatibility tensor. The associated energy flow is shown to be successfully 

visualized by the duality diagram, while the duality coefficient provides a quantitative measures of 

the system response, i.e., apparent reduction rate of the shear modulus.    
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