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Abstract  
In this work we use the Particle Filter Method to solve a state estimation problem resulting from the 
application of Hodgkin-Huxley's model to Purkinje fibers, by applying Liu and West's Auxiliary 
Sampling Importance Resampling (ASIR) algorithm. This algorithm allows the simultaneous 
estimation of state variables and parameters. The estimation of the action potential in Purkinje 
fibers can be related to the identification of heart anomalies. The use of Bayesian particle filters is 
of great interest for such specific application, since they take into account uncertainties in the 
mathematical models for the evolution of the state variables and the measurements. Simulated 
measurements are used in this work to examine the accuracy of the Particle Filter Method under 
analysis.   
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Introduction 

Hodgkin and Huxley (1952) proposed a model for the action potential in an axon, in terms of an 
electric circuit with capacitance and ionic currents. Sodium and potassium ions are the most 
important in the action potential and are distinguished in terms of their own proper currents, in 
comparison to the other ions. The model involves a non-linear system of four ordinary differential 
equations, whose coefficients are given in terms of functions of the applied potential. Although 
Hodgkin-Huxley's model has been originally proposed for the experimental data involving an axon, 
it has also been used to model the action potential in heart cells, like Purkinje fibers (Noble, 1962).  
 
State estimation problems are dynamically solved within the Bayesian framework (Kaipio and 
Somersalo, 2004; Arulampalam et al., 2001). In this framework, an attempt is made to utilize all 
available information in order to reduce the amount of uncertainty present in inferential or decision-
making problems. As new information is obtained, it is combined with previous information to form 
the basis for statistical procedures. The formal mechanism that combines the new information with 
the previously available information is known Bayes’ theorem (Kaipio and Somersalo, 2004). 
Monte Carlo methods have been developed in order to represent the posterior density in terms of 
random samples and associated weights and can be applied to non-linear models with non-Gaussian 
errors (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al., 
2001; Orlande et al., 2012), such as the one under analysis in this work. 
 
In this paper we extend our previous work (Estumano et al., 2013) in order to compare the results 
obtained with the Sampling Importance Resampling (SIR) algorithm and the Auxiliary Sampling 
Importance Resampling (ASIR) algorithm (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; 
Ristic et al., 2004; Doucet et al., 2001), to results obtained with the algorithm proposed by Liu and 
West (2001). This paper is focused on the use of Hodgkin-Huxley’s models for the action potential 
in Purkinje Fibers (Noble, 1962). The three algorithms are compared in terms of their computational 
times and RMS errors. We note, beforehand, that Liu and West's algorithm is the most general of 
the three algorithms listed above, since uncertainties in the model parameters are taken into account 
through Gaussian kernel smoothing (Liu and West, 2001).  Other recent applications of inverse 
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problems to Hodgkin-Huxley's model include the works of Dokos and Lovell (2004) and Meng et 
al. (2011). 

Hodgkin-Huxley’s Model 

Hodgkin and Huxley, in their classical paper of 1952, examined the behavior of an axon under the 
effects of an imposed electric current across the cell membrane. The cell electric potential was 
assumed to be independent of the position within the cell, that is, the intracellular electric resistance 
was neglected. In their experiments, Hodgkin and Huxley (1952) observed that the conductance of 
some ions across the cell membrane, like sodium and potassium, varied with changes in the axon's 
potential. The imposed electric current across the cell membrane was then modeled in terms of 
capacitive and ionic currents. Being the sodium and potassium ions recognized as the most 
important ones in this process, their currents were treated separately from those corresponding to 
the other ions, which were quantified in a global manner and referred to as leakage current. For the 
model, an inflow of ions was assumed as positive. 
 
A basic difference between axons and Purkinje fibers results from the fact that in the last ones the 
potassium flow is governed by both a fast and a slow channel dynamics. In addition, the flow of 
ions other than sodium and potassium through the cell membrane can be neglected, so that the 
analogous electric circuit for the problem is presented in Figure 1. The imposed electric current is 
null for the case involving Purkinje fibers because these cells are auto-excitable (Noble, 1962). 
Therefore, the equation for the action potential in Purkinje fibers is given by (Noble, 1962):  

 

( ) ( ) 0m
m Na m Na K m K
dVC G V V G V V
dt

+ − + − =     (1) 

 

 
Figure 1. – Electric circuit for a Purkinje fibers (Noble, 1962) 

 
The equations given by Noble (1962) for sodium and potassium conductances of a Purkinje fiber 
are given, respectively, by: 
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where m  and n represent the open fraction, or probability of the channels being open, for sodium 
and potassium, respectively, while h  is the probability of the channel being closed for the sodium 
ions. The variables m  and n  are also referred to as the activations of the ion transfer through the 
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cell membrane, while h  is referred to as the inactivation for the sodium ion transfer. In equation 
(2), max

NaG refers to the maximum sodium conductance.  
 
Hodgkin and Huxley (1952) proposed the following ordinary differential equations to describe the 
ion channels opening/closing dynamics: 
  

( )1α β= − +m m
dm m m
dt

 ( )1α β= − +h h
dh h h
dt

  ( )1α β= − +n n
dn n n
dt

  (4-6) 

 
The parameters for the computation of the activations m and n and inactivation h in Eq. (4)-(6) are 
given as (Noble, 1962): 
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Other parameters for the application of Hodgkin-Huxley's model for a Purkinje fiber are presented 
in Table 1 (Estumano et al., 2013). 

 
Table 1. Parameters for Hodgkin-Huxley's model for Purkinje fiber 

Parameter Values                Parameter Values                Parameter Values 
Cm µ F cm−2( )  12                ( )NaV mV  40 

                 ( ),Na lG mS  0.14 

( )max
NaG mS  400 

               ( )kV mV  -100   

State Estimation Problem 

In order to define the state estimation problem, consider a model for the evolution of the vector x in 
the form (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al., 
2001; Orlande et al., 2012): 
 

1 1( , )k k k k− −=x f x v      (13) 
 
where the subscript k = 1, 2, …, denotes a time instant tk in a dynamic problem. The vector xnR∈x  
is called the state vector and contains the variables to be dynamically estimated. This vector 
advances in accordance with the state evolution model given by Eq. (13), as a non-linear function of 
the state variables x  and of the state noise vector vnR∈v . Consider also that measurements 

zn
k R∈z  are available at tk, k = 1, 2, …. The measurements are related to the state variables x 

through the general function h in the form 
 

( , )k k k k=z h x n       (14) 
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where nnR∈n is the measurement noise. Equation (14) is referred to as the observation 
(measurement) model. 
 
The state estimation problem aims at obtaining information about xk based on the state evolution 
model (13) and on the measurements 1: { , 1, , }k i i k= =z z K  given by the observation model (14). The 
state estimation problem addressed in this work deals with Hodgkin-Huxley's model applied to 
Purkinje fibers. Therefore, the state variables are given by 
 

T [ , , , ]mV m h n=x      (15) 
 
with state evolution models given by Eqs. (1) to (12). Measurements of the cell potential, Vm, are 
supposed available for the estimation of the state variables. 
 
Due to its nonlinear character, the Particle Filter Method was used for the solution of the present 
state estimation problem (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; 
Doucet et al., 2001; Orlande et al., 2012). In this method, the required posterior density function is 
represented by a set of random samples (particles) with associated weights, which are then used for 
the sequential computation of its associated statistics. The particle filter algorithms generally make 
use of an importance density, which is proposed to represent another density that cannot be exactly 
computed, that is, the sought posterior density in the present case. Then, samples are drawn from 
the importance density instead of the actual density (Kaipio and Somersalo, 2004; Arulampalam et 
al., 2001; Ristic et al, 2004; Doucet et al., 2001; Orlande et al., 2012). 
 
The set of particles from time t0 to time tk is denoted as 0:{ , 0, , }i

k i N=x K  and their associated 
weights as { , 0, , }i

kw i N= K , where N is the number of particles. The weights are normalized, so 

that 
1

1
N

i
k

i
w

=

=∑ . The sequential application of the particle filter might result in the degeneracy 

phenomenon, where after a few states very few particles have negligible weight (Kaipio and 
Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al., 2001; Orlande et al., 
2012). An attempt to overcome this difficulty is to use a resampling step in the application of the 
particle filter, where particles with small weights are discarded and particles with large weights are 
replicated. In the Sampling Importance Resampling (SIR) algorithm, resampling is applied every 
time step (Arulampalam et al., 2001; Ristic et al., 2004). Although the resampling step reduces the 
effects of the degeneracy problem, it may lead to a loss of diversity and the resultant sample may 
contain many repeated particles, which is more likely to occur in the case of small state evolution 
noise (Kaipio and Somersalo, 2004; Arulampalam et al., 2001; Ristic et al., 2004; Doucet et al., 
2001; Orlande et al., 2012). In addition, in the SIR algorithm the state space is explored without the 
information conveyed by the measurements at the specific instant that the state variables are sought. 
With the Auxiliary Sampling Importance Resampling (ASIR) algorithm an attempt is made to 
overcome these limitations, by performing the resampling step at time tk-1, with the available 
measurement at time tk (Arulampalam et al., 2001; Ristic et al., 2004). The resampling is based on 
some point estimate µi

k that characterizes π(xk|xi
k-1), which can be the mean of π(xk|xi

k-1) or simply a 
sample of π(xk|xi

k-1). If the state evolution model noise is small, π(xk|xi
k-1) is generally well 

characterized by µi
k, so that the weights i

kw  are more even and the ASIR algorithm is less sensitive 
to outliers than the SIR algorithm. On the other hand, if the state evolution model noise is large, the 
single point estimate µi

k in the state space may not characterize well π(xk|xi
k-1) and the ASIR 

algorithm may not be as effective as the SIR algorithm.  
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We note that the functions fk(.) and hk(.), in the evolution and observation models, respectively, 
contain several constant parameters, here denoted as the vector θ . However, in general, such 
parameters are not deterministic or might not be deterministically known. Therefore, the samples 
need to be extended to { , : 0, , }i i

k k i N=x θ K  with associated weights { : 0, , }i
kw i N= K . In this work, 

the algorithm developed by Liu and West (2001), and based on the ASIR algorithm, is used for the 
solution of the state estimation problem, with the vector of state variables given by equation (15) 
and the vector of parameters given by: 
 

Τ
,[ , , ]max

m Na Na lC G G=θ       (17) 
 
Such parameters were selected for the present analysis because they are the ones with larger 
variabilities in the open literature. 
 
The algorithms of the SIR and ASIR filters, as well as the one due to Liu and West, can be found in 
Kaipio and Somersalo (2004), Arulampalam et al. (2001), Ristic et al. (2004), Liu and West (2001), 
Orlande et al. (2012), Colaço et al. (2012) and are not repeated here for the sake of brevity. 

Results and Discussion 

In this paper, the three algorithms described above are compared in terms of their RMS errors and 
computational times, for cases dealing with axons and Purkinje fibers. The CPU times correspond 
to a computational code running under the Matlab platform, in an Intel i5 CPU with 6 Gb of RAM 
memory. The RMS error is computed as 
 

( ) ( )
2

1

1 M
est i exa ii

RMS x t x t
M =

= −⎡ ⎤⎣ ⎦∑      (18) 

 
where the subscripts est and exa denote the estimated and exact values of the state variable ( )ix t  at 
time ti, while M is the number of time steps. A similar definition was used to compute the RMS 
errors for each parameter θ . The RMS errors were compared in terms of the means of 100 
repetitions of the particle filter estimates, in order to avoid any bias resulting from different sets of 
simulated measurements used in the analysis (Hamilton et al., 2013). 
 
Simulated measurements of the cell potential, Vm, were utilized in the present work. Such 
measurements were generated from a numerical simulation of the deterministic dynamic problem 
for the Purkinje fibers. Errors in the simulated measurements were additive, uncorrelated, with a 
Gaussian distribution, zero mean and a constant standard deviationσ , so that the likelihood 
function at time tk is given by 
 

2
22

1 1( | ) exp [ ( ) ( )]
22

mod
k k m k m kV t V tπ

σπ σ

⎧ ⎫
= − −⎨ ⎬

⎩ ⎭
z x    (19) 

 
where the superscript mod  refers to the measurement variable computed with the observation 
model given by Eq. (14). Simulated measurements were considered available in time intervals of 10 
ms . For the results presented below, the parameters given by Eqs. (1) to (12) and Table 1 were 
used in the analysis. The initial conditions for these cases were taken 
as ( )0 70mV mV= − , ( )0 0.079m = , ( )0 0.323n =  and ( )0 0.602h =  (Estumano et al., 2013). The 
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errors in the evolution model were additive, uncorrelated, with Gaussian distribution, zero mean and 
a constant standard deviation of 5% of the absolute value of the state variables at the initial time. 
The standard deviations of the measurements were taken as 5% of the maximum absolute value of 
the measured variable, that is, σ = 0.05|Vm,max|.  
 
The results obtained for the estimation of the state variables and the model parameters with Liu and 
West's algorithm are presented in figures 2 and 3, respectively. Such results were obtained with 500 
particles. Figure 2 shows an excellent agreement between exact and estimated state variables, even 
for those for which measurements are not available, such as m, n and h. Similarly, uncertainties in 
the model parameters are appropriately taken into account as depicted from figure 3. Note in this 
figure that the exact values of the parameters fall within the confidence intervals of the estimates. 
Figures 2 and 3 reveals the robustness of Liu and West's algorithm as applied to the present problem, 
which was capable of accurately estimating state variables and model parameters, despite the large 
uncertainties in the evolution and measurement models, as well as in the model parameters. 
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Figure 2: Estimation of the state variables 

 
Tables 2-4 present the RMS errors and the computational times for the three Particle filter 
algorithms examined in this work, for various numbers of particles (Np). Let us first examine tables 
2 and 3, which present the results obtained with the SIR and the ASIR algorithms, respectively. 
Such algorithms deal only with the estimation of the state variables. These tables show, as expected, 
a reduction on the RMS errors, followed by an increase in the computational time, as the number of 
particles is increased. In addition, we notice in tables 2 and 3 that the RMS errors tend to approach a 
constant value as the number of particles is increased. According to tables 2 and 3, similar RMS 
errors were obtained with the ASIR algorithm by using less particles than those of the SIR 
algorithm. Although the ASIR algorithm is more expensive than the SIR algorithm in terms of 
computational time for the same number of particles, the ASIR algorithm is capable of providing 
accurate results with a much smaller number of particles. As a result, the computational times are 
smaller with the ASIR algorithm than with the SIR algorithm, for results of comparable accuracy. 
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Figure 3: Estimation of the model parameters 
 

Table 2: RMS errors and computational times for the SIR algorithm 
Np CPU Time (s) mV (mV) m n h 
20 3.12 2.8126  0.0945 0.0806 0.0289 
50 7.35 1.6984 0.0889 0.0743 0.0240 
100 15.01 1.5899 0.0884 0.0698 0.0231 
500 72.07 1.5811 0.0883 0.0669 0.0221 
1000 140.08 1.5778 0.0882 0.0662 0.0221 
2000 247.73 1.5769 0.0882 0.0662 0.0220 

 
Table 3: RMS errors and computational times for the ASIR algorithm 

Np CPU Time (s) mV (mV) m n h 
50 15.91 1.4275 0.0902 0.0757 0.0191 
100 48.00 1.4195 0.0901 0.0732 0.0182 
200 111.03 1.4118 0.0900 0.0711 0.0174 
300 205.77 1.4069 0.0900 0.0706 0.0173 
400 332.19 1.4043 0.0900 0.0692 0.0170 
500 485.80 1.4021 0.0900 0.0685 0.0170 

 
The results obtained with Liu and West's algorithm (2001) are presented in table 4. A comparison of 
tables 3 and 4 reveal an increase on the computational time, for the same number of particles, when 
Liu and West's algorithm was used, caused by the simultaneous estimation of parameters and state 
variables. Anyhow, both state variables and parameters can be accurately estimated (see also figures 
2 and 3) with this algorithm. In addition, the RMS error was reduced when the uncertainties on the 
parameters was taken into account, as compared to the original ASIR algorithm. 
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Table 4: RMS errors and computational times for Liu and West's algorithm 
Np CPU Time (s) mV (mV) m n h mC µ F cm−2( )  NaG (mS) ,Na lG  (mS) 

50 96.76 1.1360 0.0109 0.0133 0.0109 0.0621 5.2964 0.0003 
100 191.55 1.1417 0.0111 0.0133 0.0129 0.0734 7.0376 0.0008 
200 383.40 1.1373 0.0108 0.0132 0.0138 0.0662 8.6214 0.0007 
300 574.81 1.2897 0.0108 0.0134 0.0173 0.0885 8.5989 0.0007 
400 765.37 1.1356 0.0108 0.0133 0.0126 0.1613 9.3856 0.0009 
500 957.93 1.1402 0.0109 0.0135 0.0135 0.0782 8.9281 0.0009 

Conclusions 

Particle filter methods are the most general techniques for the solution of state estimation problems 
involving nonlinear and non-Gaussian models. In this paper, three different particle filter algorithms 
were applied to the estimation of state variables of the model proposed by Hodgkin and Huxley to 
describe the action potential in excitable cells. Cases involving Purkinje fiber are examined in the 
paper, by using simulated measurements of the action potential. Although the SIR and the ASIR 
algorithms are capable of accurately estimating the state variables, we notice that the more general 
algorithm by Liu and West allows the simultaneous estimation of the state variables and model 
parameters. Furthermore, such quantities can be estimated with better accuracy than those related to 
the estimation of only the state variables.  
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