
APCOM & ISCM  

11-14
th

 December, 2013, Singapore 

 

1 

 

Direct numerical simulation of unsteady natural convection boundary layers on 

an evenly heated plate with time-varying heating flux 

*Wenxian Lin
1,2

 and S.W. Armfield
3
 

1
School of Engineering, James Cook University,Townsville, QLD 4811, Australia. 

2
Solar Energy Research Institute, Yunnan Normal University, Kunming, Yunnan 650092, China. 

3
School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia. 

*Corresponding author: Wenxian.lin@jcu.edu.au 

Abstract 

It is of fundamental significance and application importance to fully understand the flow behavior 
of unsteady natural convection boundary layers under time-dependent heating conditions. Such an 
understanding is currently scarce. In this paper, a series of scalings developed for the major 
parameters representing the flow behavior of the unsteady natural convection boundary layer of a 
homogeneous Newtonian fluid with Pr>1 adjacent to a vertical plate evenly heated with a time-
varying sinusoidal heat flux were validated by comparison to ten direct numerical simulations. 
These scaling provide relations between these parameters with the governing parameters of the flow, 
i.e., the Rayleigh number (Ra), the Prandtl number (Pr), and the dimensionless natural frequency (fn) 
of the time-varying sinusoidal heat flux, at the start-up stage, at the critical time, and at the quasi-
steady state. The results show that in general these scalings provide an accurate description of the 
flow at different development stages.  

Keywords: Natural convection, boundary layer, scaling, direct numerical simulation, heat flux, 

time-dependent heating.  

Introduction 

As a classic fluid mechanics problem, owing to its fundamental and practical significance, natural 
convection boundary layer flow has been the subject of numerous studies. Earlier studies have 
focused on experimental and analytical investigations of the steady-state behavior of the flow, in 
particularly that on a heated semi-infinite vertical wall and in a rectangular cavity with differentially 
heated sidewalls (see, e.g., Hyun (1994)). More recent studies have focused on the transient flow 
behavior. In particular, scaling analysis has proven to be a very effective tool to reveal the transient 
behavior of such a flow and it has been employed to develop scalings to represent the transient 
behavior of natural convection boundary layers under various configurations and flow conditions 
(see, e.g., Patterson and Imberger (1980), Lin and Armfield (1999, 2001, 2005, 2012), Lin et al. 
(2007)).  
 
Unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat 
flux are found in many applications, such as in the Trombe wall system of a passive solar house and 
in a solar chimney. In the Trombe wall case, the wall, which is usually painted in black or with a 
solar selective coating, absorbs solar radiation and converts it into heat which is then transported to 
the dwelling by the heated air via natural convection boundary layer flow in the channel formed by 
the glazing and the wall. A solar chimney operates in a similar manner. For both cases, the time-
dependent solar radiation, which varies sinusoidally under a clear sky condition (only in the first 
half of the sinusoidal cycle), serves as the heat flux for the natural convection boundary-layer flows.  
 
Although there have been numerous studies on natural convection boundary layers on a vertical 
plate heated by a heat flux, the majority of these studies have been on the cases where the applied 
heat flux is either uniformly constant or spatially varied but not time dependent (see, e.g., Armfield 
et al. (2007), Lin et al. (2009), Patterson et al. (2009), Bednarz et al. (2009), Saha et al. (2012), 
Capobianchi and Aziz (2012)). The studies on unsteady natural convection boundary layers on a 
vertical plate heated by a time-dependent heat flux are currently lacking, which motivates this study. 
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Governing equations and scalings 

Under consideration is the unsteady natural convection boundary layer of a homogeneous 

Newtonian fluid with Pr>1 adjacent to a vertical plate evenly heated with a time-varying sinusoidal 

heat flux in the form of  

   ftt
dX

dT
wmw 2sin ,                                                 (1) 

where T is temperature, X is the horizontal coordinate, w(t) is the transient temperature gradient 

across at the plate at time instant t, wm is the maximum temperature gradient across at the plate, 

and f is the natural frequency of the time-varying flux applied to the plate. The flow is assumed to 

be two-dimensional and the fluid is initially at rest. The plate lies at X=0 with the origin at Y=0 (Y is 

the vertical coordinate), with the plate boundary conditions, 

  0  0for    0at    2sin  0  t,Yxft
dX

dT
,VU wm  ,                          (2) 

where wm and and f are assumed to be constant for a specific time-varying flux condition. 

Governing equations 

The governing equations of motion are the Navier-Stokes equations with the Boussinesq 

approximation for buoyancy, which together with the temperature equation can be written in the 

following dimensionless, two-dimensional forms, 
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where Ra and Pr are the Rayleigh number and the Prandtl number, defined as 
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in which g is the acceleration due to gravity which acts in the negative y-direction, β, ν and κ are the 

thermal expansion coefficient, kinematic viscosity and thermal diffusivity of the fluid, H is the 

height of the plate, and w  is the time-averaged temperature gradient across the plate thickness 

calculated by 

  
totalt

wmwm

total

w dtft
t 0

2
2sin

1


 ,                                            (8) 

where ttotal is the total heating time of the time-varying flux applied. In this paper, it is assumed that 

2πfttotal=π, i.e., f=0.5/ttotal (hence only the first half heating cycle is considered, which is in line with 

the time-dependent solar radiation model under a clear sky condition, although the results obtained 

here are not limited to only the cases driven by time-dependent solar radiation). Apparently, Ra 

defined above is the time-averaged global Rayleigh number for the unsteady natural convection 

boundary layer over the duration of heating under the time-varying flux applied to the plate. 

 

In the above governing equations, x, y, u, v, , p, and θ are respectively the dimensionless forms of 

X, Y, U, V, t, P, and T, which are the horizontal and vertical coordinates, horizontal and vertical 
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velocity components, time, pressure, and temperature. x, y, u, v, , p, and θ are made dimensionless 

by their respective characteristic scales as follows, 
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in which H is the characteristic length scale, Ta is the initial temperature of the ambient fluid, 

H/RaV / 52

0   is the characteristic velocity scale, /HHT wmww  2  is the characteristic 

temperature difference scale, respectively. 

Scalings 

With the initiation of the flow, a vertical boundary layer will be developed adjacent to the plate, 

experiencing a start-up stage dominated by one-dimensional conduction, followed by a transitional 

stage during which a transition to two-dimensional convection occurs, before eventually attaining a 

quasi-steady state, with the transition time scale s to separate the start-up stage and the transitional 

stage, as illustrated in Fig. 1, where a typical numerically simulated time series of the dimensionless 

thermal boundary-layer thickness T at height y=0.5 for the specific case of Ra=10
8
, Pr=7 and 

fn=0.1 (fn=f/(V0/H) is the dimensionless natural frequency of the time-varying flux applied) is 

shown. Similar behavior is also observed for the other parameters to represent the transient behavior 

of an unsteady natural convection boundary layer on a vertical plate evenly heated with a time-

varying heat flux, i.e., the plate temperature, θw, the maximum vertical velocity within the boundary 

layer, vm, and the inner viscous boundary-layer thickness, vi, as shown in Fig. 2. 

 

 

 
Figure 1.  The three development stages of an unsteady natural convection boundary layer. 

 

We have developed the following dimensionless scalings for the unsteady natural convection 

boundary layer of a homogeneous Newtonian fluid with Pr>1 adjacent to a vertical plate evenly 

heated with a time-varying sinusoidal heat flux: 

1. At the start-up stage:  
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Figure 2.  Time series of T, vi, θw, and vm at y=0.1, 0.3, 0.5, 0.7 and 0.9 for the case of 

Ra=10
8
, Pr=7 and fn=0.1. 

 

2. At the dimensionless transition time scale s: 
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3. At the quasi-steady state: 
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Validation and quantification of scalings with numerical results 

From the scalings, it is clear that the major parameters that govern the behavior of the unsteady 

natural convection boundary layer studied in this work are Ra, Pr, and fn. To examine the effects of 

these three parameters on the scalings ten direct numerical simulation runs were performed; four 
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runs are at varying Ra (10
6
, 10

7
, 10

8
, and 10

9
, respectively) with fixed Pr=7 and fn=0.1 for the Ra 

dependence; five runs are at varying Pr (3, 7, 20, 50, and 100, respectively) with fixed Ra=10
8
 and 

fn=0.1 for the Pr dependence; and three runs are at varying fn (0.1, 0.025, and 0.01, respectively) 

with fixed Ra=10
8
 and Pr=7 for the fn dependence. All simulations were conducted in a 

dimensionless 22 computational domain with a mesh of 399396 nodes. This mesh was chosen 

after a detailed mesh dependence test which ensures the simulation results obtained with it are mesh 

independent. The same code used in Lin and Armfield (1999, 2001, 2005, 2012) was used for these 

simulations. As the numerical methods, the construction and dependence test of the computational 

meshes, and the benchmarking of the code against the known theoretical results were well detailed 

in these references, these will not be repeated here. 

 

1. At the start-up stage 

 

 
Figure 3.  Validation and quantification of the scalings at the start-up stage with the 

numerical results. 

 

The validation results for the scalings at the start-up stage are presented in Fig. 3, which clearly 

shows that all scalings are in good agreement with the numerical results as each scaling collapses 

the corresponding numerical results well onto a single straight line. The scalings are also quantified 

by the numerical results with a linear regression technique, giving the following quantified relations: 
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2. At the dimensionless transition time scale s 

 

The validation results for the scalings at the dimensionless transition time scale s are presented in 

Fig. 4, which clearly shows that all scalings are also in good agreement with the numerical results 

as each scaling collapses the corresponding numerical results well onto a single straight line. The 

scalings are also quantified by the numerical results with the following quantified relations: 
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Figure 4.  Validation and quantification of the scalings at the dimensionless transition time 

scale s with the numerical results. 
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3. At the quasi-steady state 
 

The validation results for the scalings at the quasi-steady state are presented in Fig. 5, which clearly 

shows that all scalings are again in good agreement with the numerical results as each scaling 

collapses the corresponding numerical results well onto a single straight line. The scalings are again 

quantified by the numerical results with the following quantified relations: 
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Figure 5.  Validation and quantification of the scalings at the quasi-steady state with the 

numerical results. 



8 

 

Conclusions 

In this paper, it was found that the transient and quasi-steady flow behavior of the unsteady natural 

convection boundary layer of a homogeneous Newtonian fluid with Pr>1 adjacent to a vertical plate 

evenly heated with a time-varying sinusoidal heat flux is controlled by the Rayleigh number, the 

Prandtl number, and the dimensionless natural frequency of the sinusoidal heat flux and is well 

represented by parameters such as the thermal boundary-layer thickness, the plate temperature, the 

viscous boundary-layer thickness, and the maximum vertical velocity within the boundary layer. 

The scalings developed for these parameters were compared with a series of direct numerical 

simulation, which clearly shows that these scalings in general predict the flow behavior very well, 

no matter at the start-up stage, or at the transition time scale which represents the end of the start-up 

stage and the beginning of the transitional stage of the boundary-layer development, or at the quasi-

steady state. 
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